Chapter 2: Q20E (page 77)
Evalauate the limit, if it exists.
\(\mathop {{\bf{lim}}}\limits_{u \to - {\bf{1}}} \frac{{u + {\bf{1}}}}{{{u^{\bf{3}}} + {\bf{1}}}}\)
Short Answer
The value of the limit is \(\frac{1}{3}\).
Chapter 2: Q20E (page 77)
Evalauate the limit, if it exists.
\(\mathop {{\bf{lim}}}\limits_{u \to - {\bf{1}}} \frac{{u + {\bf{1}}}}{{{u^{\bf{3}}} + {\bf{1}}}}\)
The value of the limit is \(\frac{1}{3}\).
All the tools & learning materials you need for study success - in one app.
Get started for free19-32: Prove the statement using the \(\varepsilon ,\delta \) definition of a limit.
28. \(\mathop {\lim }\limits_{x \to - {6^ + }} \sqrt(8){{6 + x}} = 0\)
19-32 Prove the statement using the \(\varepsilon \), \(\delta \)definition of a limit.
23. \(\mathop {{\bf{lim}}}\limits_{x \to a} x = a\)
Find the values of a and b that make f continuous everywhere.
\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^{\bf{2}}} - {\bf{4}}}}{{{\bf{x}} - {\bf{2}}}}}&{{\bf{if}}\,\,\,x < {\bf{2}}}\\{a{x^{\bf{2}}} - bx + {\bf{3}}}&{{\bf{if}}\,\,\,{\bf{2}} \le x < {\bf{3}}}\\{{\bf{2}}x - a + b}&{{\bf{if}}\,\,\,x \ge {\bf{3}}}\end{array}} \right.\)
41-42 Show that f is continuous on \(\left( { - \infty ,\infty } \right)\).
\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{\bf{sin}}\,x}&{{\bf{if}}\,\,x < \frac{\pi }{{\bf{4}}}}\\{{\bf{cos}}\,x}&{{\bf{if}}\,\,\,x \ge \frac{\pi }{{\bf{4}}}}\end{array}} \right.\)
Find \(f'\left( a \right)\).
\(f\left( x \right) = {\bf{2}}{x^2} - {\bf{5}}x + {\bf{3}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.