Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

1. Given that

\(\mathop {lim}\limits_{x \to 2} f\left( x \right) = 4\) \(\mathop {lim}\limits_{x \to 2} g\left( x \right){\bf{ = }} - {\bf{2}}\) \(\mathop {lim}\limits_{x \to 2} h\left( x \right) = 0\)

find the limits that exist. If the limit does not exist, explainwhy.

(a)\(\mathop {lim}\limits_{x \to 2} \left( {f\left( x \right) + 5g\left( x \right)} \right)\)

(b) \(\mathop {lim}\limits_{x \to 2} {\left( {g\left( x \right)} \right)^{\bf{3}}}\)

(c) \(\mathop {lim}\limits_{x \to 2} \sqrt {f\left( x \right)} \)

(d) \(\mathop {lim}\limits_{x \to 2} \frac{{{\bf{3}}f\left( x \right)}}{{g\left( x \right)}}\)

(e) \(\mathop {lim}\limits_{x \to 2} \frac{{g\left( x \right)}}{{h\left( x \right)}}\)

(f) \(\mathop {lim}\limits_{x \to 2} \frac{{g\left( x \right)h\left( x \right)}}{{f\left( x \right)}}\)

Short Answer

Expert verified
  1. \(\mathop {lim}\limits_{x \to 2} \left( {f\left( x \right) + 5g\left( x \right)} \right) = - 6\)
  2. \(\mathop {lim}\limits_{x \to 2} {\left( {g\left( x \right)} \right)^3} = - 8\)
  3. \(\mathop {lim}\limits_{x \to 2} \sqrt {f\left( x \right)} = 2\)
  4. \(\mathop {lim}\limits_{x \to 2} \frac{{3f\left( x \right)}}{{g\left( x \right)}} = - 6\)
  5. \(\mathop {lim}\limits_{x \to 2} \frac{{g\left( x \right)}}{{h\left( x \right)}} = {\rm{does}}\;{\rm{not}}\;{\rm{exist}}\)
  6. \(\mathop {lim}\limits_{x \to 2} \frac{{g\left( x \right)h\left( x \right)}}{{f\left( x \right)}} = 0\)

Step by step solution

01

Apply Sum laws

According to the sum law, \(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) + g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) + \mathop {\lim }\limits_{x \to a} g\left( x \right)\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists.

Apply the law in the given function as:

\(\mathop {lim}\limits_{x \to 2} \left( {f\left( x \right) + 5g\left( x \right)} \right) = \mathop {lim}\limits_{x \to 2} f\left( x \right) + \mathop {lim}\limits_{x \to 2} \left( {5g\left( x \right)} \right)\)

02

(a)Step 2: Apply Constant Multiple laws

According to the constant multiple law, \(\mathop {\lim }\limits_{x \to a} cf\left( x \right) = c\mathop {\lim }\limits_{x \to a} f\left( x \right)\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) exists.

Apply the law and use the given values as shown below:

\(\begin{array}{c}\mathop {lim}\limits_{x \to 2} f\left( x \right) + \mathop {lim}\limits_{x \to 2} \left( {5g\left( x \right)} \right) &=& \mathop {lim}\limits_{x \to 2} f\left( x \right) + 5\mathop {lim}\limits_{x \to 2} g\left( x \right)\\ &=& 4 + 5\left( { - 2} \right)\\ &=& 4 - 10\\ &=& - 6\end{array}\)

Thus, the value of the limit is \( - 6\).

03

(b) Step 3: Apply Power law

According to the Power law, \(\mathop {\lim }\limits_{x \to a} {\left( {f\left( x \right)} \right)^n} = {\left( {\mathop {\lim }\limits_{x \to a} f\left( x \right)} \right)^n}\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) exists and \(n\) is a positive integer.

Apply the law and use given values as:

\(\begin{array}{c}\mathop {lim}\limits_{x \to 2} {\left( {g\left( x \right)} \right)^3} &=& {\left( {\mathop {lim}\limits_{x \to 2} g\left( x \right)} \right)^3}\\ &=& {\left( { - 2} \right)^3}\\ &=& - 8\end{array}\)

Thus, the value of the limit is \( - 8\).

04

(c)  Step 4: Apply Power laws

According to the Root law, \(\mathop {\lim }\limits_{x \to a} \sqrt(n){{f\left( x \right)}} = \sqrt(n){{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) exists and \(n\) is a positive integer.

Apply the law and use the given values as:

\(\begin{array}{c}\mathop {lim}\limits_{x \to 2} \sqrt {f\left( x \right)} &=& \sqrt {\mathop {lim}\limits_{x \to 2} f\left( x \right)} \\ &=& \sqrt 4 \\ &=& 2\end{array}\)

Thus, the value of the limit is 2.

05

(d) Step 5: Apply Quotient laws

According to the Quotient law, \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{f\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists and \(\mathop {\lim }\limits_{x \to a} g\left( x \right) \ne 0\).

Apply the law and use the given values as:

\(\begin{array}{c}\mathop {lim}\limits_{x \to 2} \frac{{3f\left( x \right)}}{{g\left( x \right)}} &=& \frac{{\mathop {lim}\limits_{x \to 2} 3f\left( x \right)}}{{\mathop {lim}\limits_{x \to 2} g\left( x \right)}}\\ &=& \frac{{3\mathop {lim}\limits_{x \to 2} f\left( x \right)}}{{\mathop {lim}\limits_{x \to 2} g\left( x \right)}}\\ &=& \frac{{3\left( 4 \right)}}{{ - 2}}\\ &=& - 6\end{array}\)

Thus, the value of the limit is \( - 6\).

06

(e)  Step 6: Apply Quotient laws

According to the Quotient law, \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{f\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists and \(\mathop {\lim }\limits_{x \to a} g\left( x \right) \ne 0\).

Since the limit of \(\mathop {lim}\limits_{x \to 2} h\left( x \right)\) is \(0\), therefore we cannot use quotient law.

Hence, the limit of the function \(\mathop {lim}\limits_{x \to 2} \frac{{g\left( x \right)}}{{h\left( x \right)}}\) does not exist as the denominator tends to \(0\).

07

(f)  Step 7: Apply Quotient laws

According to the Quotient law, \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{f\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists and \(\mathop {\lim }\limits_{x \to a} g\left( x \right) \ne 0\).

Apply the law and use given values as:

\(\mathop {lim}\limits_{x \to 2} \frac{{g\left( x \right)h\left( x \right)}}{{f\left( x \right)}} = \frac{{\mathop {lim}\limits_{x \to 2} g\left( x \right)h\left( x \right)}}{{\mathop {lim}\limits_{x \to 2} f\left( x \right)}}\)

08

Apply Product laws

According to the product law, \(\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right)\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists.

Apply the law and use given values as:

\(\begin{array}{c}\frac{{\mathop {lim}\limits_{x \to 2} g\left( x \right)h\left( x \right)}}{{\mathop {lim}\limits_{x \to 2} f\left( x \right)}} &=& \frac{{\mathop {lim}\limits_{x \to 2} g\left( x \right) \cdot \mathop {lim}\limits_{x \to 2} h\left( x \right)}}{{\mathop {lim}\limits_{x \to 2} f\left( x \right)}}\\ &=& \frac{{\left( { - 2} \right) \cdot \left( 0 \right)}}{4}\\ &=& 0\end{array}\)

Thus, the value of the limit is 0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Each limit represents the derivative of some function f at some number a. State such an f and a in each case.

\(\mathop {{\bf{lim}}}\limits_{h \to {\bf{0}}} \frac{{\sqrt {{\bf{9}} + h} - {\bf{3}}}}{h}\)

If a rock is thrown upward on the Planet Mars with a velocity of 10 m/s, its height in meters t seconds later it is given by \(y = {\bf{10}}t - {\bf{1}}.{\bf{86}}{t^{\bf{2}}}\).

(a) Find the average velocity over the given time intervals:

(i) \(\left( {{\bf{1}},{\bf{2}}} \right)\)

(ii) \(\left( {{\bf{1}},{\bf{1}}.{\bf{5}}} \right)\)

(iii) \(\left( {{\bf{1}},{\bf{1}}.{\bf{1}}} \right)\)

(iv) \(\left( {{\bf{1}},{\bf{1}}.{\bf{01}}} \right)\)

(v) \(\left( {{\bf{1}},{\bf{1}}.{\bf{001}}} \right)\)

(b) Estimate the instantaneous velocity when \(t = {\bf{1}}\).

Suppose f and g are continuous functions such that \(g\left( {\bf{2}} \right) = {\bf{6}}\) and \(\mathop {{\bf{lim}}}\limits_{x \to {\bf{2}}} \left( {{\bf{3}}f\left( x \right) + f\left( x \right)g\left( x \right)} \right) = {\bf{36}}\). Fine \(f\left( {\bf{2}} \right)\).

Sketch the graph of the function g for which \(g\left( {\bf{0}} \right) = g\left( {\bf{2}} \right) = g\left( {\bf{4}} \right) = {\bf{0}}\), \(g'\left( {\bf{1}} \right) = g'\left( {\bf{3}} \right) = {\bf{0}}\), \(g'\left( {\bf{0}} \right) = g'\left( {\bf{4}} \right) = {\bf{1}}\), \(g'\left( {\bf{2}} \right) = - {\bf{1}}\), \(\mathop {{\bf{lim}}}\limits_{x \to \infty } g\left( x \right) = \infty \), and \(\mathop {{\bf{lim}}}\limits_{x \to - \infty } g\left( x \right) = - \infty \).

Find \(f'\left( a \right)\).

\(f\left( t \right) = \frac{{\bf{1}}}{{{t^{\bf{2}}} + {\bf{1}}}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free