Let \(f\left( x \right) = \frac{{{x^2} - 3x}}{{{x^2} - 9}}\).
Evaluate the function at \(x = 3.1\) as shown below:
\(\begin{aligned}\mathop {\lim }\limits_{x \to 3.1} \frac{{{x^2} - 3x}}{{{x^2} - 9}} &=\frac{{{{\left( {3.1} \right)}^2} - 3\left( {3.1} \right)}}{{{{\left( {3.1} \right)}^2} - 9}}\\ &=\frac{{9.61 - 9.3}}{{9.61 - 9}}\\&=\frac{{0.31}}{{0.61}}\\ &= 0.508197\end{aligned}\)
The other values are obtained in a similar way listed in the table as shown below:
\(x\) | \(f\left( x \right)\) |
\(\begin{aligned}{l}3.1\\3.05\\3.01\\3.001\\3.0001\\2.9\\2.95\\2.99\\2.999\\2.9999\end{aligned}\) | \(\begin{array}{l}0.508197\\0.504132\\0.500183\\0.500083\\0.500008\\0.491525\\0.495795\\0.499165\\0.499917\\0.499992\end{array}\) |
It is observed from the table that left, and right limits are the same and therefore, \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 3x}}{{{x^2} - 9}} = 0.5 \approx \frac{1}{2}\).
Thus, the value of the limit is \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 3x}}{{{x^2} - 9}} = \frac{1}{2}\).