Forthe expression \(\mathop {\lim }\limits_{x \to - 2} \frac{{x - 3}}{{3x - 1}}\), Quotient law is applicable.
According to the Quotient law, \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{f\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists and \(\mathop {\lim }\limits_{x \to a} g\left( x \right) \ne 0\).
Solve the expression \(\mathop {\lim }\limits_{x \to - 2} \frac{{x - 3}}{{3x - 1}}\).
\(\begin{aligned}\mathop {\lim }\limits_{x \to - 2} \frac{{x - 3}}{{3x - 1}} &= \frac{{\mathop {\lim }\limits_{x \to - 2} \left( {x - 3} \right)}}{{\mathop {\lim }\limits_{x \to - 2} \left( {3x - 1} \right)}}\\ &= \frac{{\mathop {\lim }\limits_{x \to - 2} \left( x \right) - \mathop {\lim }\limits_{x \to - 2} \left( 3 \right)}}{{\mathop {\lim }\limits_{x \to - 2} \left( {3x} \right) - \mathop {\lim }\limits_{x \to - 2} \left( 1 \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\rm{Difference}}\;{\rm{law}}} \right)\\ &= \frac{{ - 2 - 3}}{{3\left( { - 2} \right) - 1}}\,\\ &= \frac{{ - 5}}{{ - 7}}\\ &= \frac{5}{7}\end{aligned}\)
Thus, the value of the limit is\(\frac{5}{7}\).