Simplify the obtained derivative as:
\(\begin{aligned}J'\left( u \right) &= \left( {\frac{1}{u} + \frac{1}{{{u^2}}}} \right)\frac{d}{{du}}\left( {u + \frac{1}{u}} \right) + \left( {u + \frac{1}{u}} \right)\frac{d}{{du}}\left( {\frac{1}{u} + \frac{1}{{{u^2}}}} \right)\\ &= \left( {\frac{1}{u} + \frac{1}{{{u^2}}}} \right)\left( {1 - \frac{1}{{{u^2}}}} \right) + \left( {u + \frac{1}{u}} \right)\left( { - \frac{1}{{{u^2}}} - \frac{2}{{{u^3}}}} \right)\\ &= \left( {\frac{1}{u} + \frac{1}{{{u^2}}} - \frac{1}{{{u^3}}} - \frac{1}{{{u^4}}}} \right) + \left( { - \frac{1}{u} - \frac{1}{{{u^3}}} - \frac{2}{{{u^2}}} - \frac{2}{{{u^4}}}} \right)\\ &= \frac{1}{u} + \frac{1}{{{u^2}}} - \frac{1}{{{u^3}}} - \frac{1}{{{u^4}}} - \frac{1}{u} - \frac{1}{{{u^3}}} - \frac{2}{{{u^2}}} - \frac{2}{{{u^4}}}\\ &= - \frac{1}{{{u^2}}} - \frac{2}{{{u^3}}} - \frac{3}{{{u^4}}}\\ &= - \left( {\frac{1}{{{u^2}}} + \frac{2}{{{u^3}}} + \frac{3}{{{u^4}}}} \right)\end{aligned}\)
So, \(J'(u) = - \left( {\frac{1}{{{u^2}}} + \frac{2}{{{u^3}}} + \frac{3}{{{u^4}}}} \right)\)is the final answer of this derivative.