Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evalauate the limit, if it exists.

\(\mathop {{\bf{lim}}}\limits_{x \to {\bf{4}}} \frac{{{x^{\bf{2}}} + {\bf{3}}x}}{{{x^{\bf{2}}} - x - {\bf{12}}}}\)

Short Answer

Expert verified

The limit does not exist.

Step by step solution

01

Step 1:Simplify the limit by using the factorization

Factorize the numerator and denominator of the expression \(\mathop {\lim }\limits_{x \to 4} \frac{{{x^2} + 3x}}{{{x^2} - x - 12}}\).

\(\begin{aligned}\mathop {\lim }\limits_{x \to 4} \frac{{{x^2} + 3x}}{{{x^2} - x - 12}} &= \mathop {\lim }\limits_{x \to 4} \frac{{x\left( {x + 3} \right)}}{{\left( {x - 4} \right)\left( {x + 3} \right)}}\\ &= \mathop {\lim }\limits_{x \to 4} \frac{x}{{x - 4}}\end{aligned}\)

02

Evaluate the limit

For the expression \(\mathop {\lim }\limits_{x \to 4} \frac{x}{{x - 4}}\), Quotient law is applicable.

According to the Quotient law, \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{f\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists and \(\mathop {\lim }\limits_{x \to a} g\left( x \right) \ne 0\).

Solve the expression \(\mathop {\lim }\limits_{x \to 4} \frac{x}{{x - 4}}\).

\(\begin{aligned}\mathop {\lim }\limits_{x \to 4} \frac{x}{{x - 4}} &= \frac{{\mathop {\lim }\limits_{x \to 4} \left( x \right)}}{{\mathop {\lim }\limits_{x \to 4} \left( {x - 4} \right)}}\\ &= \frac{{\mathop {\lim }\limits_{x \to 4} \left( x \right)}}{{\mathop {\lim }\limits_{x \to 4} \left( x \right) - \mathop {\lim }\limits_{x \to 4} \left( 4 \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\rm{Difference}}\;{\rm{law}}} \right)\\ &= \frac{4}{{4 - 4}}\end{aligned}\)

The limit does not exist.

For \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{x}{{x - 4}}\),

\(\mathop {\lim }\limits_{x \to {4^ - }} \frac{x}{{x - 4}} = - \infty \)

For \(\mathop {\lim }\limits_{x \to {4^ + }} \frac{x}{{x - 4}}\),

\(\mathop {\lim }\limits_{x \to {4^ + }} \frac{x}{{x - 4}} = + \infty \)

So, the limit does not exist.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free