Chapter 2: Q14E (page 77)
Use the graph of the function \(f\) to state the value of each limit, if it exists. If it does not exist, explain why.
(a)\(\mathop {{\bf{lim}}}\limits_{{\bf{x}} \to {{\bf{0}}^ - }} f\left( x \right)\) (b)\(\mathop {{\bf{lim}}}\limits_{{\bf{x}} \to {{\bf{0}}^{\bf{ + }}}} f\left( x \right)\) (c)\(\mathop {{\bf{lim}}}\limits_{{\bf{x}} \to {\bf{0}}} f\left( x \right)\)
14. \(f\left( x \right){\bf{ = }}\frac{{{e^{{\bf{1}}/x}} - {\bf{2}}}}{{{e^{{\bf{1}}/x}} + {\bf{1}}}}\)
Short Answer
- \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - 2\)
- \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = 1\)
- \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = {\rm{does}}\;{\rm{not}}\,{\rm{exist}}\)