Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the limit, if it exists.

\(\mathop {{\bf{lim}}}\limits_{x \to - {\bf{3}}} \frac{{{x^{\bf{2}}} + {\bf{3}}x}}{{{x^{\bf{2}}} - x - {\bf{12}}}}\)

Short Answer

Expert verified

The value of the limit is \(\frac{3}{7}\).

Step by step solution

01

Step 1:Simplify the limit by using the factorization

Factorize the numerator and denominator of the expression \(\mathop {\lim }\limits_{x \to - 3} \frac{{{x^2} + 3x}}{{{x^2} - x - 12}}\).

\(\begin{aligned}\mathop {\lim }\limits_{x \to - 3} \frac{{{x^2} + 3x}}{{{x^2} - x - 12}} &= \mathop {\lim }\limits_{x \to - 3} \frac{{x\left( {x + 3} \right)}}{{\left( {x - 4} \right)\left( {x + 3} \right)}}\\ &= \mathop {\lim }\limits_{x \to - 3} \frac{x}{{x - 4}}\end{aligned}\)

02

Evaluate the limit

For the expression \(\mathop {\lim }\limits_{x \to - 3} \frac{x}{{x - 4}}\)quotient lawis applicable.

According to the Quotient law, \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{f\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\), where \(\mathop {\lim }\limits_{x \to a} f\left( x \right)\) and \(\mathop {\lim }\limits_{x \to a} g\left( x \right)\) exists and \(\mathop {\lim }\limits_{x \to a} g\left( x \right) \ne 0\).

Solve the expression \(\mathop {\lim }\limits_{x \to - 3} \frac{x}{{x - 4}}\).

\(\begin{aligned}\mathop {\lim }\limits_{x \to - 3} \frac{x}{{x - 4}} &= \frac{{\mathop {\lim }\limits_{x \to - 3} \left( x \right)}}{{\mathop {\lim }\limits_{x \to - 3} \left( {x - 4} \right)}}\\ &= \frac{{ - 3}}{{ - 3 - 4}}\,\\ &= \frac{3}{7}\end{aligned}\)

Thus, the value of the limit is \(\frac{3}{7}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free