Chapter 2: Q14E (page 77)
Differentiate.
\(F\left( x \right) = \frac{1}{{2{x^3} - 6{x^2} + 5}}\)
\(\)
Short Answer
Derivative of the function is \( - \frac{{6{x^2} - 12x}}{{{{\left( {2{x^3} - 6{x^2} + 5} \right)}^2}}}\).
Chapter 2: Q14E (page 77)
Differentiate.
\(F\left( x \right) = \frac{1}{{2{x^3} - 6{x^2} + 5}}\)
\(\)
Derivative of the function is \( - \frac{{6{x^2} - 12x}}{{{{\left( {2{x^3} - 6{x^2} + 5} \right)}^2}}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeThe table shows the position of a motorcyclist after accelerating from rest.
t(seconds) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
s(feet) | 0 | 4.9 | 20.6 | 46.5 | 79.2 | 124.8 | 176.7 |
(a) Find the average velocity for each time period:
(i) \(\left( {{\bf{2}},{\bf{4}}} \right)\) (ii) \(\left( {{\bf{3}},{\bf{4}}} \right)\) (iii) \(\left( {{\bf{4}},{\bf{5}}} \right)\) (iv) \(\left( {{\bf{4}},{\bf{6}}} \right)\)
(b) Use the graph of s as a function of t to estimate the instantaneous velocity when \(t = {\bf{3}}\).
For the function g whose graph is shown, find a number a that satisfies the given description.
(a)\(\mathop {{\bf{lim}}}\limits_{x \to a} g\left( x \right)\) does not exist but \(g\left( a \right)\) is defined.
(b)\(\mathop {{\bf{lim}}}\limits_{x \to a} g\left( x \right)\) exists but \(g\left( a \right)\) is not defined.
(c) \(\mathop {{\bf{lim}}}\limits_{x \to {a^ - }} g\left( x \right)\) and \(\mathop {{\bf{lim}}}\limits_{x \to {a^ + }} g\left( x \right)\) both exists but \(\mathop {{\bf{lim}}}\limits_{x \to a} g\left( x \right)\) does not exist.
(d) \(\mathop {{\bf{lim}}}\limits_{x \to {a^ + }} g\left( x \right) = g\left( a \right)\) but \(\mathop {{\bf{lim}}}\limits_{x \to {a^ - }} g\left( x \right) \ne g\left( a \right)\).
\({x^{\rm{2}}} + {y^{\rm{2}}} = {r^{\rm{2}}}\), \(ax + by = {\rm{0}}\).
19-32: Prove the statement using the \(\varepsilon ,\delta \) definition of a limit.
28. \(\mathop {\lim }\limits_{x \to - {6^ + }} \sqrt(8){{6 + x}} = 0\)
Find \(f'\left( a \right)\).
\(f\left( t \right) = {t^3} - 3t\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.