Use law 8 and law 3, the properties of limit.
\(\begin{array}{c}\sqrt {\frac{{\mathop {\lim }\limits_{x \to \infty } 9 + \mathop {\lim }\limits_{x \to \infty } \left( {\frac{8}{{{x^2}}}} \right) - \mathop {\lim }\limits_{x \to \infty } \left( {\frac{4}{{{x^3}}}} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {\frac{3}{{{x^3}}}} \right) - \mathop {\lim }\limits_{x \to \infty } \left( {\frac{5}{{{x^2}}}} \right) + \mathop {\lim }\limits_{x \to \infty } 1}}} = \sqrt {\frac{{9 + \mathop {\lim }\limits_{x \to \infty } \left( {\frac{8}{{{x^2}}}} \right) - \mathop {\lim }\limits_{x \to \infty } \left( {\frac{4}{{{x^3}}}} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {\frac{3}{{{x^3}}}} \right) - \mathop {\lim }\limits_{x \to \infty } \left( {\frac{5}{{{x^2}}}} \right) + 1}}} \\ = \sqrt {\frac{{9 + 8\left( 0 \right) - 4\left( 0 \right)}}{{3\left( 0 \right) - 5\left( 0 \right) + 1}}} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\rm{Using}}\,{\rm{theorem 5}}} \right)\\ = \sqrt 9 \\ = 3\end{array}\)
So, the value of the limit is 3.