Chapter 2: Q13E (page 77)
Use the graph of the function \(f\) to state the value of each limit, if it exists. If it does not exist, explain why.
(a) \(\mathop {{\bf{lim}}}\limits_{{\bf{x}} \to {{\bf{0}}^ - }} f\left( x \right)\) (b) \(\mathop {{\bf{lim}}}\limits_{{\bf{x}} \to {{\bf{0}}^{\bf{ + }}}} f\left( x \right)\) (c) \(\mathop {{\bf{lim}}}\limits_{{\bf{x}} \to {\bf{0}}} f\left( x \right)\)
13. \(f\left( x \right){\bf{ = }}x\sqrt {{\bf{1}} + {x^{ - {\bf{2}}}}} \)
Short Answer
(a) \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - 1\)
(b) \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = 1\)
(c) \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = {\rm{does}}\;{\rm{not}}\,{\rm{exist}}\)