Chapter 2: Q13E (page 77)
Evalauate the limit, if it exists.
\(\mathop {{\bf{lim}}}\limits_{t \to {\bf{4}}} \frac{{{t^{\bf{2}}} - {\bf{2}}t - {\bf{8}}}}{{t - {\bf{4}}}}\)
Short Answer
The value of the limit is 6.
Chapter 2: Q13E (page 77)
Evalauate the limit, if it exists.
\(\mathop {{\bf{lim}}}\limits_{t \to {\bf{4}}} \frac{{{t^{\bf{2}}} - {\bf{2}}t - {\bf{8}}}}{{t - {\bf{4}}}}\)
The value of the limit is 6.
All the tools & learning materials you need for study success - in one app.
Get started for freeFor what value of the constant c is the function f continuous on \(\left( { - \infty ,\infty } \right)\)?
47. \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{c{x^{\bf{2}}} + {\bf{2}}x}&{{\bf{if}}\,\,\,x < {\bf{2}}}\\{{x^3} - cx}&{{\bf{if}}\,\,\,x \ge {\bf{2}}}\end{array}} \right.\)
Each limit represents the derivative of some function \(f\) at some number \(a\). State such an \(f\) and \(a\) in each case.
\(\mathop {{\rm{lim}}}\limits_{\theta \to \pi /6} \frac{{{\rm{sin}}\theta - \frac{1}{2}}}{{\theta - \frac{\pi }{6}}}\)
Explain the meaning of each of the following.
(a)\(\mathop {{\bf{lim}}}\limits_{x \to - {\bf{3}}} f\left( x \right) = \infty \)
(b)\(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{4}}^ + }} f\left( x \right) = - \infty \)
Use equation 5 to find \(f'\left( a \right)\) at the given number \(a\).
\(f\left( x \right) = \frac{{\bf{1}}}{{\sqrt {{\bf{2}}x + {\bf{2}}} }}\), \(a = {\bf{1}}\)
Sketch the graph of the function fwhere the domain is \(\left( { - {\bf{2}},{\bf{2}}} \right)\),\(f'\left( {\bf{0}} \right) = - {\bf{2}}\), \(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{2}}^ - }} f\left( x \right) = \infty \), f is continuous at all numbers in its domain except \( \pm {\bf{1}}\), and f is odd.
What do you think about this solution?
We value your feedback to improve our textbook solutions.