Chapter 2: Q12E (page 77)
Sketch the graph of the function \(f\)and use it to determine
the values of \(a\) for which \(\mathop {lim}\limits_{x \to a} f\left( x \right)\) exists.
12. \(f\left( x \right) = \left\{ \begin{aligned}{l}\sqrt({\bf{3}}){x}\;\;\;\;\;\;if\;\;\;\;\;\;x \le - {\bf{1}}\\x\;\;\;\;\;\;\;\;\;if\,\; - {\bf{1}} < x \le 2\\{\left( {x - {\bf{1}}} \right)^{\bf{2}}}\;if\,\;\;\;\;\;x > 2\end{aligned} \right.\)
Short Answer
The graph of the function is shown below:
The \(\mathop {lim}\limits_{x \to a} f\left( x \right)\) exists for all \(a \in \left( { - \infty ,2} \right) \cup \left( {2,\infty } \right)\).