Chapter 2: Q12E (page 77)
Differentiate.
\(G\left( u \right) = \frac{{6{u^4} - 5u}}{{u + 1}}\)
Short Answer
Derivative of the function is \(\frac{{18{u^4} + 24{u^3} - 5}}{{{{\left( {u + 1} \right)}^2}}}\).
Chapter 2: Q12E (page 77)
Differentiate.
\(G\left( u \right) = \frac{{6{u^4} - 5u}}{{u + 1}}\)
Derivative of the function is \(\frac{{18{u^4} + 24{u^3} - 5}}{{{{\left( {u + 1} \right)}^2}}}\).
All the tools & learning materials you need for study success - in one app.
Get started for free19-24Explain why the function is discontinuous at the given number\(a\). Sketch the graph of the function.
20. \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{1}{{x + 2}}}&{if\;x \ne 2}\\1&{if\;x = - 2}\end{array}} \right.\), \({\bf{a = - 2}}\)
Explain the meaning of each of the following.
(a)\(\mathop {{\bf{lim}}}\limits_{x \to - {\bf{3}}} f\left( x \right) = \infty \)
(b)\(\mathop {{\bf{lim}}}\limits_{x \to {{\bf{4}}^ + }} f\left( x \right) = - \infty \)
Find the values of a and b that make f continuous everywhere.
\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^{\bf{2}}} - {\bf{4}}}}{{{\bf{x}} - {\bf{2}}}}}&{{\bf{if}}\,\,\,x < {\bf{2}}}\\{a{x^{\bf{2}}} - bx + {\bf{3}}}&{{\bf{if}}\,\,\,{\bf{2}} \le x < {\bf{3}}}\\{{\bf{2}}x - a + b}&{{\bf{if}}\,\,\,x \ge {\bf{3}}}\end{array}} \right.\)
The point \(P\left( {{\bf{1}},{\bf{0}}} \right)\) lies on the curve \(y = {\bf{sin}}\left( {\frac{{{\bf{10}}\pi }}{x}} \right)\).
a. If Qis the point \(\left( {x,{\bf{sin}}\left( {\frac{{{\bf{10}}\pi }}{x}} \right)} \right)\), find the slope of the secant line PQ (correct to four decimal places) for \(x = {\bf{2}}\), 1.5, 1.4, 1.3, 1.2, 1.1, 0.5, 0.6, 0.7, 0.8, and 0.9. Do the slopes appear to be approaching a limit?
b. Use a graph of the curve to explain why the slopes of the secant lines in part (a) are not close to the slope of the tangent line at P.
c. By choosing appropriate secant lines, estimate the slope of the tangent line at P.
Find \(f'\left( a \right)\).
\(f\left( t \right) = \frac{{\bf{1}}}{{{t^{\bf{2}}} + {\bf{1}}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.