Apply the definition ofinstantaneous velocitywhich states that the position function \(f\left( t \right)\) at time \(t = a\) is represented as \(v\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {a + h} \right) - f\left( a \right)}}{h}\).
Now find the velocity at time \(t = 2.5\;{\rm{seconds}}\).
\(\begin{aligned}v\left( t \right) &= \mathop {\lim }\limits_{h \to 0} \frac{{d\left( {2.5 + h} \right) - d\left( {2.5} \right)}}{h}\\ &= \mathop {\lim }\limits_{h \to 0} \frac{{16{{\left( {2.5 + h} \right)}^2} - 100}}{h}\\ &= \mathop {\lim }\limits_{h \to 0} \frac{{100 + 80h + {{16}^2} - 100}}{h}\\ &= \mathop {\lim }\limits_{h \to 0} \frac{{80h + 16{h^2}}}{h}\\ &= \mathop {\lim }\limits_{h \to 0} \frac{{h\left( {80 + 16h} \right)}}{h}\\ &= \mathop {\lim }\limits_{h \to 0} \left( {80 + 16h} \right)\\ &= 80\end{aligned}\)
Thus, diver hit the water with velocity \(80\;{\rm{ft/s}}\).