Chapter 2: Q10E (page 77)
Differentiate
\(y = \frac{{{e^x}}}{{{\bf{1}} - {e^x}}}\)
Short Answer
The derivative of y is \(\frac{{{e^x}}}{{{{\left( {1 - {e^x}} \right)}^2}}}\).
Chapter 2: Q10E (page 77)
Differentiate
\(y = \frac{{{e^x}}}{{{\bf{1}} - {e^x}}}\)
The derivative of y is \(\frac{{{e^x}}}{{{{\left( {1 - {e^x}} \right)}^2}}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the graph of the function f for which \(f\left( {\bf{0}} \right) = {\bf{0}}\), \(f'\left( {\bf{0}} \right) = {\bf{3}}\), \(f'\left( {\bf{1}} \right) = {\bf{0}}\), and \(f'\left( {\bf{2}} \right) = - {\bf{1}}\).
Sketch the graph of the function g for which \(g\left( {\bf{0}} \right) = g\left( {\bf{2}} \right) = g\left( {\bf{4}} \right) = {\bf{0}}\), \(g'\left( {\bf{1}} \right) = g'\left( {\bf{3}} \right) = {\bf{0}}\), \(g'\left( {\bf{0}} \right) = g'\left( {\bf{4}} \right) = {\bf{1}}\), \(g'\left( {\bf{2}} \right) = - {\bf{1}}\), \(\mathop {{\bf{lim}}}\limits_{x \to \infty } g\left( x \right) = \infty \), and \(\mathop {{\bf{lim}}}\limits_{x \to - \infty } g\left( x \right) = - \infty \).
Find equations of both the tangent lines to the ellipse\({{\rm{x}}^{\rm{2}}}{\rm{ + 4}}{{\rm{y}}^{\rm{2}}}{\rm{ = 36}}\)that pass through the point \(\left( {{\rm{12,3}}} \right)\)
19-32: Prove the statement using the \(\varepsilon ,\delta \) definition of a limit.
31. \(\mathop {\lim }\limits_{x \to - 2} \left( {{x^2} - 1} \right) = 3\)
\({x^{\rm{2}}} + {y^{\rm{2}}} = ax\), \({x^{\rm{2}}} + {y^{\rm{2}}} = by\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.