Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Q22E

Page 77

Find the derivative of the function using the definition of the derivative. State the domain of the function and the domain of the derivative.

22. \(f\left( x \right) = mx + b\)

Q22E

Page 77

Use equation 5 to find \(f'\left( a \right)\) at the given number \(a\).

\(f\left( x \right) = \frac{{\bf{1}}}{{\sqrt {{\bf{2}}x + {\bf{2}}} }}\), \(a = {\bf{1}}\)

Q22E

Page 77

Evaluate the limit, if it exists.

\(\mathop {{\bf{lim}}}\limits_{x \to {\bf{9}}} \frac{{{\bf{9}} - x}}{{{\bf{3}} - \sqrt x }}\)

Q22E

Page 77

19-32 Prove the statement using the \(\varepsilon \), \(\delta \) definition of a limit.

22. \(\mathop {{\bf{lim}}}\limits_{x \to - {\bf{1}}.{\bf{5}}} \frac{{{\bf{9}} - {\bf{4}}{x^{\bf{2}}}}}{{{\bf{3}} + {\bf{2}}x}} = {\bf{6}}\)

Q22E

Page 77

19-24Explain why the function is discontinuous at the given number\(a\). Sketch the graph of the function.

22. \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - x}}{{{x^2} - 1}}}&{if\;x \ne 1}\\1&{if\;x = 1}\end{array}} \right.,\,\,a = 1\)

Q23E

Page 77

19-24Explain why the function is discontinuous at the given number\(a\). Sketch the graph of the function.

23. \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{cosx}&{if\;x < 0}\\0&{if\;x = 0}\\{1 - {x^2}}&{if\;x > 0}\end{array}} \right.,\,a = 0\)

Q23E

Page 77

Evaluate the limit if it exists.

\(\mathop {{\bf{lim}}}\limits_{h \to {\bf{0}}} \frac{{\sqrt {{\bf{9}} + h} - {\bf{3}}}}{h}\)

Q23E

Page 77

Find \(f'\left( a \right)\).

\(f\left( x \right) = {\bf{2}}{x^2} - {\bf{5}}x + {\bf{3}}\)

Q23E

Page 77

Use a table of values to estimate the value of the limit. If you have a graphing device, use it to confirm your result graphically.

\(\mathop {\lim }\limits_{x \to 4} \frac{{\ln x - \ln 4}}{{x - 4}}\)

Q23E

Page 77

Find the derivative of the function using the definition of the derivative. State the domain of the function and the domain of the derivative.

23. \(f\left( t \right) = 2.5{t^2} + 6t\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks