Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the domain and range of the function

\(g\left( x \right) = {\sin ^{ - 1}}\left( {3x + 1} \right)\)

Short Answer

Expert verified

The domain and range of the function are \(\left[ { - \frac{2}{3},0} \right]\) and \(\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]\).

Step by step solution

01

Determine the domain of the function

Evaluate the domain of the function as shown below:

\(\begin{aligned}{\mathop{\rm Domain}\nolimits} \left( g \right) &= \left\{ {x| - 1 \le 3x + 1 \le 1} \right\}\\ &= \left\{ {x| - 1 - 1 \le 3x \le 1 - 1} \right\}\\ &= \left\{ {x| - 2 \le 3x \le 0} \right\}\\ &= \left\{ {x| - \frac{2}{3} \le x \le 0} \right\}\\ &= \left[ { - \frac{2}{3},0} \right]\end{aligned}\)

Thus, the domain of the function is \(\left[ { - \frac{2}{3},0} \right]\).

02

Determine the range of the function

Evaluate the range of the function as shown below:

\(\begin{aligned}{\mathop{\rm Range}\nolimits} \left( g \right) &= \left\{ {y| - \frac{\pi }{2} \le y \le \frac{\pi }{2}} \right\}\\ &= \left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]\end{aligned}\)

Thus, the range of the function is \(\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free