Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the table to evaluate each expression

\(x\)

1

2

3

4

5

6

\(f\left( x \right)\)

3

1

5

6

2

4

\(g\left( x \right)\)

5

3

4

1

3

2

56.

(a) \(g\left( {g\left( {g\left( 2 \right)} \right)} \right)\)

(b) \(\left( {f \circ f \circ f} \right)\left( 1 \right)\)

(c) \(\left( {f \circ f \circ g} \right)\left( 1 \right)\)

(d) \(\left( {g \circ f \circ g} \right)\left( 3 \right)\)

Short Answer

Expert verified

The values of the following expressions are:

a)\(g\left( {g\left( {g\left( 2 \right)} \right)} \right) = 1\).

b)\(\left( {f \circ f \circ f} \right)\left( 1 \right) = 2\).

c)\(\left( {f \circ f \circ g} \right)\left( 1 \right) = 1\).

d) \(\left( {g \circ f \circ g} \right)\left( 3 \right) = 2\).

Step by step solution

01

The composite function

Consider two functions \(f\) and \(g\), the composite function\(f \circ g\)(also called the composition of\(f\) and \(g\)) is defined by

\(\left( {f \circ g} \right)\left( x \right) = f\left( {g\left( x \right)} \right)\)

02

Use the table to evaluate the expression

a)

Use the table to evaluate the expression\(g\left( {g\left( {g\left( 2 \right)} \right)} \right)\)as shown below:

\(\begin{aligned}g\left( {g\left( {g\left( 2 \right)} \right)} \right) &= g\left( {g\left( 3 \right)} \right)\\ &= g\left( 4 \right)\\ &= 1\end{aligned}\)

Thus, the expression is\(g\left( {g\left( {g\left( 2 \right)} \right)} \right) = 1\).

b)

Use the table to evaluate the expression\(\left( {f \circ f \circ f} \right)\left( 1 \right)\)as shown below:

\(\begin{aligned}\left( {f \circ f \circ f} \right)\left( 1 \right) &= f\left( {f\left( {f\left( 1 \right)} \right)} \right)\\ &= f\left( {f\left( 3 \right)} \right)\\ &= f\left( 5 \right)\\ &= 2\end{aligned}\)

Thus, the expression is\(\left( {f \circ f \circ f} \right)\left( 1 \right) = 2\).

c)

Use the table to evaluate the expression\(\left( {f \circ f \circ g} \right)\left( 1 \right)\)as shown below:

\(\begin{aligned}\left( {f \circ f \circ g} \right)\left( 1 \right) &= f\left( {f\left( {g\left( 1 \right)} \right)} \right)\\ &= f\left( {f\left( 5 \right)} \right)\\ &= f\left( 2 \right)\\ &= 1\end{aligned}\)

Thus, the expression is\(\left( {f \circ f \circ g} \right)\left( 1 \right) = 1\).

d)

Use the table to evaluate the expression\(\left( {g \circ f \circ g} \right)\left( 3 \right)\)as shown below:

\(\begin{aligned}\left( {g \circ f \circ g} \right)\left( 3 \right) &= g\left( {f\left( {g\left( 3 \right)} \right)} \right)\\ &= g\left( {f\left( 4 \right)} \right)\\ &= g\left( 6 \right)\\ &= 2\end{aligned}\)

Thus, the expression is \(\left( {g \circ f \circ g} \right)\left( 3 \right) = 2\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The graph of a f and \(g\) is given.

(a) State the values of \(f\left( { - {\bf{4}}} \right)\)and \(g\left( {\bf{3}} \right)\).

(b) Which is larger, \(f\left( { - {\bf{3}}} \right)\)and \(g\left( { - {\bf{3}}} \right)\)?

(c) For what values of x is \(f\left( x \right) = g\left( x \right)\)?

(d) On what interval(s) is \(f\left( x \right) \le g\left( x \right)\)?

(e) State the solution of the equation \(f\left( x \right) = - {\bf{1}}\).

(f) On what interval(s) is g decreasing?

(g) State the domain and range of f.

(h) State the domain and range of g.

For what values of \(x\) is \(g\) continuous?

72. \(g\left( x \right) = \left\{ \begin{array}{l}0\,\,\,\,\,{\mathop{\rm if}\nolimits} \,\,x\,\,{\mathop{\rm is}\nolimits} \,\,\,{\mathop{\rm rational}\nolimits} \\x\,\,\,\,\,{\mathop{\rm if}\nolimits} \,\,x\,\,{\mathop{\rm is}\nolimits} \,\,\,{\mathop{\rm irrational}\nolimits} \end{array} \right.\)

In this section we discussed examples of ordinary, everyday functions: population is a function of time, postage cost is a function of package weight, water temperature is a function of time. Give three other examples of functions from everyday life that are described verbally. What can you say about the domain and range of each of your functions? If possible, sketch a rough graph of each function.

Determine whether f is even, odd, or neither. You may wish to use a graphing calculator or computer to check your answer visually.

82. \(f\left( x \right) = \frac{{{x^{\bf{2}}}}}{{{x^{\bf{4}}} + {\bf{1}}}}\)

Sketch the graph of the function

\(f\left( x \right) = \left| {x + {\bf{2}}} \right|\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free