Chapter 1: Q46E (page 7)
39-46 find the domain of the function.
46. \(h\left( x \right) = \sqrt {{x^2} - 4x - 5} \)
Short Answer
The domain of the function is \(\left( { - \infty , - 1} \right) \cup \left( {5,\infty } \right)\).
Chapter 1: Q46E (page 7)
39-46 find the domain of the function.
46. \(h\left( x \right) = \sqrt {{x^2} - 4x - 5} \)
The domain of the function is \(\left( { - \infty , - 1} \right) \cup \left( {5,\infty } \right)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the domain and range and sketch the graph of the function \(h\left( x \right) = \sqrt {4 - {x^2}} \).
49-52 Evaluate \(f\left( { - 3} \right),f\left( 0 \right),\) and \(f\left( 2 \right)\) for the piecewise-defined function. Then sketch the graph of the function.
50. \(f\left( x \right) = \left\{ \begin{aligned}5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\mathop{\rm if}\nolimits} \,\,x < 2\\\frac{1}{2}x - 3\,\,\,{\mathop{\rm if}\nolimits} \,\,x \ge 2\end{aligned} \right.\)
7-14 determine whether the equation or table defines \(y\) as a function of \(x\).
12. \(2x - \left| y \right| = 0\)
7-14 Determine whether the equation or table defines y as a function of x.
\({x^{\bf{2}}} + {\left( {y - {\bf{3}}} \right)^2} = {\bf{5}}\)
15-18 determine whether the curve is the graph of a function of \(x\). If it is, state the domain and range of the function.
17.
What do you think about this solution?
We value your feedback to improve our textbook solutions.