Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the laws of logarithms to expand each expression.

44.

(a) \(\ln \sqrt {\frac{{3x}}{{x - 3}}} \)

(b) \({\log _2}\left[ {\left( {{x^3} + 1} \right)\sqrt[3]{{{{\left( {x - 3} \right)}^2}}}} \right]\)

Short Answer

Expert verified

a) The expression of \(\ln \sqrt {\frac{{3x}}{{x - 3}}} \) is \(\frac{1}{2}\ln 3 + \frac{1}{2}\ln x - \frac{1}{2}\ln \left( {x - 3} \right)\).

b) The expression of \({\log _2}\left( {\left[ {{x^3} + 1} \right)\sqrt[3]{{{{\left( {x - 3} \right)}^2}}}} \right]\) is \({\log _2}\left( {{x^3} + 1} \right) + \frac{2}{3}{\log _2}\left( {x - 3} \right)\).

Step by step solution

01

Law of Logarithm

When \(x\) and \(y\) are positive numbers, then;

  1. \({\log _b}\left( {xy} \right) = {\log _b}x + {\log _b}y\)
  2. \({\log _b}\left( {\frac{x}{y}} \right) = {\log _b}x - {\log _b}y\)
  3. \({\log _b}\left( {{x^r}} \right) = r{\log _b}x\) (Where \(r\) is any real number)
02

Use the laws of logarithms to expand the expression

a)

Use the laws of logarithms to expand the expression as shown below:

\(\begin{aligned}\ln \sqrt {\frac{{3x}}{{x - 3}}} &= \ln {\left( {\frac{{3x}}{{x - 3}}} \right)^{\frac{1}{2}}}\\ &= \frac{1}{2}\ln \left( {\frac{{3x}}{{x - 3}}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\mathop{\rm Law}\nolimits} \,\,3} \right)\\ &= \frac{1}{2}\left( {\ln 3 + \ln x - \ln \left( {x - 3} \right)} \right)\,\,\,\,\,\left( {{\mathop{\rm Law}\nolimits} \,\,1\,\,\,{\mathop{\rm and}\nolimits} \,\,2} \right)\\ &= \frac{1}{2}\ln 3 + \frac{1}{2}\ln x - \frac{1}{2}\ln \left( {x - 3} \right)\end{aligned}\)

Thus, the expression of \(\ln \sqrt {\frac{{3x}}{{x - 3}}} \) is \(\frac{1}{2}\ln 3 + \frac{1}{2}\ln x - \frac{1}{2}\ln \left( {x - 3} \right)\).

b)

Use the laws of logarithms to expand the expression as shown below:

\(\begin{aligned}{\log _2}\left[ {\left( {{x^3} + 1} \right)\sqrt[3]{{{{\left( {x - 3} \right)}^2}}}} \right] &= {\log _2}\left( {{x^3} + 1} \right) + {\log _2}\sqrt[3]{{{{\left( {x - 3} \right)}^2}}}\,\,\,\,\left( {{\mathop{\rm Law}\nolimits} \,\,1} \right)\\ &= {\log _2}\left( {{x^3} + 1} \right) + {\log _2}{\left( {x - 3} \right)^{\frac{2}{3}}}\\ &= {\log _2}\left( {{x^3} + 1} \right) + \frac{2}{3}{\log _2}\left( {x - 3} \right)\,\,\,\,\,\,\,\,\left( {{\mathop{\rm Law}\nolimits} \,\,3} \right)\end{aligned}\)

Thus, the expression of \({\log _2}\left[ {\left( {{x^3} + 1} \right)\sqrt[3]{{{{\left( {x - 3} \right)}^2}}}} \right]\) is \({\log _2}\left( {{x^3} + 1} \right) + \frac{2}{3}{\log _2}\left( {x - 3} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determine whether f is even, odd, or neither. You may wish to use a graphing calculator or computer to check your answer visually.

85. \(f\left( x \right) = {\bf{1}} + {\bf{3}}{x^{\bf{2}}} - {x^{\bf{4}}}\)

The graph of a function \(g\) is given.

(a) State the values of \(g\left( { - {\bf{2}}} \right)\), \(g\left( {\bf{0}} \right)\), \(g\left( {\bf{2}} \right)\), and \(g\left( {\bf{3}} \right)\).

(b) For what value(s) of x is \(g\left( x \right) = {\bf{3}}\)?

(c) For what value(s) of x is \(g\left( x \right) \le {\bf{3}}\)?

(d) State the domain and range of g.

(e) On what interval(s) is g increasing?

If \(g\left( x \right) = \frac{x}{{\sqrt {x + 1} }}\), find \(g\left( 0 \right)\), \(g\left( 3 \right)\), \(5g\left( a \right)\), \(\frac{1}{2}g\left( {4a} \right)\), \(g\left( {{a^2}} \right)\), \({\left( {g\left( a \right)} \right)^2}\), \(g\left( {a + h} \right)\), \(g\left( {x - a} \right)\).

If \(f\left( x \right) = 3{x^2} - x + 2\), find \(f\left( 2 \right)\), \(f\left( { - 2} \right)\), \(f\left( a \right)\), \(f\left( { - a} \right)\), \(f\left( {a + 1} \right)\), \(2f\left( a \right)\), \(f\left( {2a} \right)\), \(f\left( {{a^2}} \right)\), \({\left( {f\left( a \right)} \right)^2}\) and \(f\left( {a + h} \right)\).

Classify each function as a power function, root function, polynomial (state its degree), rational function, algebraic function, trigonometric function, exponential function, or logarithmic function.

(a) \(f\left( x \right) = {x^{\bf{3}}} + {\bf{3}}{x^{\bf{2}}}\)

(b) \(g\left( t \right) = co{s^{\bf{2}}}t - sint\)

(c) \(r\left( t \right) = {t^{\sqrt 3 }}\)

(d) \(v\left( t \right) = {{\bf{8}}^t}\)

(e) \(y = \frac{{\sqrt x }}{{{x^2} + 1}}\)

(f) \(g\left( u \right) = lo{g_{10}}u\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free