a)
Use the laws of logarithms to expand the expression as shown below:
\(\begin{aligned}{\log _{10}}\left( {{x^2}{y^3}z} \right) &= {\log _{10}}{x^2} + {\log _{10}}{y^3} + {\log _{10}}z\,\,\,\,\,\,\left( {{\mathop{\rm Law}\nolimits} \,\,1} \right)\\ &= 2{\log _{10}}x + 3{\log _{10}}y + {\log _{10}}z\,\,\,\left( {{\mathop{\rm Law}\nolimits} \,\,3} \right)\end{aligned}\)
Thus, the expression of \({\log _{10}}\left( {{x^2}{y^3}z} \right)\) is \(2{\log _{10}}x + 3{\log _{10}}y + {\log _{10}}z\).
b)
Use the laws of logarithms to expand the expression as shown below:
\(\begin{aligned}\ln \left( {\frac{{{x^4}}}{{\sqrt {{x^2} - 4} }}} \right) &= \ln {x^4} - \ln {\left( {{x^2} - 4} \right)^{\frac{1}{2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\mathop{\rm Law}\nolimits} \,\,2} \right)\\ &= 4\ln x - \frac{1}{2}\ln \left( {\left( {x + 2} \right)\left( {x - 2} \right)} \right)\,\,\,\,\,\,\,\,\,\,\,\left( {{\mathop{\rm Law}\nolimits} \,\,3} \right)\\ &= 4\ln x - \,\frac{1}{2}\left( {\ln \left( {x + 2} \right) + \ln \left( {x - 2} \right)} \right)\,\,\,\left( {{\mathop{\rm Law}\nolimits} \,\,1} \right)\\ &= 4\ln x - \,\frac{1}{2}\ln \left( {x + 2} \right) + \frac{1}{2}\ln \left( {x - 2} \right)\end{aligned}\)
Thus, the expression of \(\ln \left( {\frac{{{x^4}}}{{\sqrt {{x^2} - 4} }}} \right)\) is \(4\ln x - \,\frac{1}{2}\ln \left( {x + 2} \right) + \frac{1}{2}\ln \left( {x - 2} \right)\).