Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the laws of logarithms to expand each expression.

43.

(a) \({\log _{10}}\left( {{x^2}{y^3}z} \right)\)

(b) \(\ln \left( {\frac{{{x^4}}}{{\sqrt {{x^2} - 4} }}} \right)\)

Short Answer

Expert verified

a) The expression of \({\log _{10}}\left( {{x^2}{y^3}z} \right)\) is \(2{\log _{10}}x + 3{\log _{10}}y + {\log _{10}}z\).

b) The expression of \(\ln \left( {\frac{{{x^4}}}{{\sqrt {{x^2} - 4} }}} \right)\) is \(4\ln x - \,\frac{1}{2}\ln \left( {x + 2} \right) + \frac{1}{2}\ln \left( {x - 2} \right)\).

Step by step solution

01

Law of Logarithm

When \(x\) and \(y\) are positive numbers, then;

  1. \({\log _b}\left( {xy} \right) = {\log _b}x + {\log _b}y\)
  2. \({\log _b}\left( {\frac{x}{y}} \right) = {\log _b}x - {\log _b}y\)
  3. \({\log _b}\left( {{x^r}} \right) = r{\log _b}x\) (where \(r\) is any real number)
02

Use the laws of logarithms to expand the expression

a)

Use the laws of logarithms to expand the expression as shown below:

\(\begin{aligned}{\log _{10}}\left( {{x^2}{y^3}z} \right) &= {\log _{10}}{x^2} + {\log _{10}}{y^3} + {\log _{10}}z\,\,\,\,\,\,\left( {{\mathop{\rm Law}\nolimits} \,\,1} \right)\\ &= 2{\log _{10}}x + 3{\log _{10}}y + {\log _{10}}z\,\,\,\left( {{\mathop{\rm Law}\nolimits} \,\,3} \right)\end{aligned}\)

Thus, the expression of \({\log _{10}}\left( {{x^2}{y^3}z} \right)\) is \(2{\log _{10}}x + 3{\log _{10}}y + {\log _{10}}z\).

b)

Use the laws of logarithms to expand the expression as shown below:

\(\begin{aligned}\ln \left( {\frac{{{x^4}}}{{\sqrt {{x^2} - 4} }}} \right) &= \ln {x^4} - \ln {\left( {{x^2} - 4} \right)^{\frac{1}{2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\mathop{\rm Law}\nolimits} \,\,2} \right)\\ &= 4\ln x - \frac{1}{2}\ln \left( {\left( {x + 2} \right)\left( {x - 2} \right)} \right)\,\,\,\,\,\,\,\,\,\,\,\left( {{\mathop{\rm Law}\nolimits} \,\,3} \right)\\ &= 4\ln x - \,\frac{1}{2}\left( {\ln \left( {x + 2} \right) + \ln \left( {x - 2} \right)} \right)\,\,\,\left( {{\mathop{\rm Law}\nolimits} \,\,1} \right)\\ &= 4\ln x - \,\frac{1}{2}\ln \left( {x + 2} \right) + \frac{1}{2}\ln \left( {x - 2} \right)\end{aligned}\)

Thus, the expression of \(\ln \left( {\frac{{{x^4}}}{{\sqrt {{x^2} - 4} }}} \right)\) is \(4\ln x - \,\frac{1}{2}\ln \left( {x + 2} \right) + \frac{1}{2}\ln \left( {x - 2} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free