Chapter 1: Q36E (page 7)
If \(f\left( t \right) = \sec t\), find \(f''\left( {\frac{\pi }{4}} \right)\).
Short Answer
The required value is \(f''\left( {\frac{\pi }{4}} \right) = 3\sqrt 2 \).
Chapter 1: Q36E (page 7)
If \(f\left( t \right) = \sec t\), find \(f''\left( {\frac{\pi }{4}} \right)\).
The required value is \(f''\left( {\frac{\pi }{4}} \right) = 3\sqrt 2 \).
All the tools & learning materials you need for study success - in one app.
Get started for freeClassify each function as a power function, root function, polynomial (state its degree), rational function, algebraic function, trigonometric function, exponential function, or logarithmic function.
2. (a) \(f\left( t \right) = \frac{{{\bf{3}}{t^{\bf{2}}} + {\bf{2}}}}{t}\)
(b) \(h\left( r \right) = {\bf{2}}.{{\bf{3}}^r}\)
(c) \(s\left( t \right) = \sqrt {t + {\bf{4}}} \)
(d) \(y = {x^{\bf{4}}} + 5\)
(e) \(g\left( x \right) = \sqrt({\bf{3}}){x}\)
(f) \(y = \frac{{\bf{1}}}{{{x^{\bf{2}}}}}\)
7-14 Determine whether the equation or table defines y as a function of x.
\({x^{\bf{2}}} + {\left( {y - {\bf{3}}} \right)^2} = {\bf{5}}\)
49-52 Evaluate \(f\left( { - 3} \right),f\left( 0 \right),\) and \(f\left( 2 \right)\) for the piecewise-defined function. Then sketch the graph of the function.
49. \(f\left( x \right) = \left\{ \begin{aligned}{x^2} + 2\,\,\,{\mathop{\rm if}\nolimits} \,\,x < 0\\x\,\,\,\,\,\,\,\,\,\,\,\,\,{\mathop{\rm if}\nolimits} \,\,x \ge 0\end{aligned} \right.\)
Find a formula for the function whose graph s the given curve.
The bottom half of the parabola \(x + {\left( {y - {\bf{1}}} \right)^{\bf{2}}} = {\bf{0}}\).
Sketch the graph of the function
\(f\left( x \right) = \left\{ {\begin{aligned}{\left| x \right|}&{{\bf{if}}\,\,\left| x \right| \le 1}\\1&{{\bf{if}}\,\left| x \right| > 1}\end{aligned}} \right.\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.