Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

1. Use the Laws of Exponents to rewrite and simplify each expression.

(a) \(\frac{{ - {2^6}}}{{{4^3}}}\)

(b) \(\frac{{{{\left( { - {\bf{3}}} \right)}^6}}}{{{{\bf{9}}^{\bf{6}}}}}\)

(c) \(\frac{{\bf{1}}}{{\sqrt({\bf{4}}){{{x^{\bf{5}}}}}}}\)

(d) \(\frac{{{x^{\bf{3}}} \cdot {x^n}}}{{{x^{n + 1}}}}\)

(e) \({b^{\bf{3}}}{\left( {3{b^{ - {\bf{1}}}}} \right)^{ - {\bf{2}}}}\)

(f) \(\frac{{{\bf{2}}{x^{\bf{2}}}y}}{{{{\left( {3{x^{ - {\bf{2}}}}y} \right)}^{\bf{2}}}}}\)

Short Answer

Expert verified

(a) \(\frac{{ - {2^6}}}{{{4^3}}} = - 1\)

(b) \(\frac{{{{\left( { - 3} \right)}^6}}}{{{9^6}}} = \frac{1}{{{3^6}}}\)

(c) \(\frac{1}{{\sqrt(4){{{x^5}}}}} = \frac{1}{{x\sqrt(4){x}}}\)

(d) \(\frac{{{x^3} \cdot {x^n}}}{{{x^{n + 1}}}} = {x^2}\)

(e) \({b^3}{\left( {3{b^{ - 1}}} \right)^{ - 2}} = \frac{{{b^5}}}{9}\)

(f) \(\frac{{2{x^2}y}}{{{{\left( {3{x^{ - 2}}y} \right)}^2}}} = \frac{{2{x^6}}}{{9y}}\)

Step by step solution

01

Simplify the expression (a)

The given expression is \(\frac{{ - {2^6}}}{{{4^3}}}\).

Use the law of exponents\({\left( {{b^x}} \right)^y} = {b^{xy}}\), and\(\frac{{{b^x}}}{{{b^y}}} = {b^{x - y}}\)to simplify the above expression as shown below:

\(\begin{aligned}\frac{{ - {2^6}}}{{{4^3}}} &= \frac{{ - {2^6}}}{{{{\left( {{2^2}} \right)}^3}}}\\ &= \frac{{ - {2^6}}}{{{2^{2 \cdot 3}}}}\\ &= \frac{{ - {2^6}}}{{{2^6}}}\end{aligned}\)

Simplify further,

\(\begin{aligned}\frac{{ - {2^6}}}{{{4^3}}} &= - {\left( 2 \right)^{6 - 6}}\\ &= - {2^0}\\ &= - 1\end{aligned}\)

Thus, \(\frac{{ - {2^6}}}{{{4^3}}} = - 1\).

02

Simplify the expression (b)

The given expression is \(\frac{{{{\left( { - 3} \right)}^6}}}{{{9^6}}}\).

Use the law of exponents\({\left( {{b^x}} \right)^y} = {b^{xy}}\), and\(\frac{{{a^x}}}{{{b^x}}} = {\left( {\frac{a}{b}} \right)^x}\)to simplify the above expression as shown below:

\(\begin{aligned}\frac{{{{\left( { - 3} \right)}^6}}}{{{9^6}}} &= \frac{{{{\left( { - 3} \right)}^6}}}{{{{\left( 9 \right)}^6}}}\\ &= {\left( { - \frac{3}{9}} \right)^6}\\ &= {\left( { - \frac{1}{3}} \right)^6}\end{aligned}\)

Simplify further,

\(\frac{{{{\left( { - 3} \right)}^6}}}{{{9^6}}} = \frac{1}{{{3^6}}}\)

Thus, \(\frac{{{{\left( { - 3} \right)}^6}}}{{{9^6}}} = \frac{1}{{{3^6}}}\).

03

Simplify the expression (c)

The given expression is \(\frac{1}{{\sqrt(4){{{x^5}}}}}\).

Use the law of exponent\({b^{x + y}} = {b^x} \cdot {b^y}\)to simplify the above expression as shown below:

\(\begin{aligned}\frac{1}{{\sqrt(4){{{x^5}}}}} &= \frac{1}{{\sqrt(4){{{x^{4 + 1}}}}}}\\ &= \frac{1}{{\sqrt(4){{{x^4} \cdot x}}}}\\ &= \frac{1}{{{{\left( {{x^4}} \right)}^{1/4}} \cdot {{\left( x \right)}^{1/4}}}}\end{aligned}\)

Simplify further,

\(\begin{aligned}\frac{1}{{\sqrt(4){{{x^5}}}}} &= \frac{1}{{{{\left( {{x^4}} \right)}^{1/4}} \cdot {{\left( x \right)}^{1/4}}}}\\ &= \frac{1}{{x\sqrt(4){x}}}\end{aligned}\)

Thus, \(\frac{1}{{\sqrt(4){{{x^5}}}}} = \frac{1}{{x\sqrt(4){x}}}\).

04

Simplify the expression (d)

The given expression is \(\frac{{{x^3} \cdot {x^n}}}{{{x^{n + 1}}}}\).

Use the law of exponents\({b^x} \cdot {b^y} = {b^{x + y}}\), and\(\frac{{{b^x}}}{{{b^y}}} = {b^{x - y}}\)to simplify the above expression as shown below:

\(\frac{{{x^3} \cdot {x^n}}}{{{x^{n + 1}}}} = \frac{{{x^{3 + }}^n}}{{{x^{n + 1}}}}\)

Simplify further,

\(\begin{aligned}\frac{{{x^3} \cdot {x^n}}}{{{x^{n + 1}}}} &= \frac{{{x^{3 + }}^n}}{{{x^{n + 1}}}}\\ &= {x^{3 + }}^{n - \left( {n + 1} \right)}\\ &= {x^{3 + n - n - 1}}\\ &= {x^2}\end{aligned}\)

Thus, \(\frac{{{x^3} \cdot {x^n}}}{{{x^{n + 1}}}} = {x^2}\).

05

Simplify the expression (e)

The given expression is \({b^3}{\left( {3{b^{ - 1}}} \right)^{ - 2}}\).

Use the law of exponents\({\left( {{b^x}} \right)^y} = {b^{xy}}\), and\({b^x} \cdot {b^y} = {b^{x + y}}\)to simplify the above expression as shown below:

\(\begin{aligned}{b^3}{\left( {3{b^{ - 1}}} \right)^{ - 2}} &= {b^3}{3^{ - 2}}{\left( {{b^{ - 1}}} \right)^{ - 2}}\\ &= \frac{{{b^3} \cdot {b^2}}}{{{3^2}}}\end{aligned}\)

Simplify further,

\(\begin{aligned}{b^3}{\left( {3{b^{ - 1}}} \right)^{ - 2}} &= \frac{{{b^3} \cdot {b^2}}}{{{3^2}}}\\ &= \frac{{{b^5}}}{9}\end{aligned}\)

Thus,\({b^3}{\left( {3{b^{ - 1}}} \right)^{ - 2}} = \frac{{{b^5}}}{9}\).

06

Simplify the expression (f)

The given expression is \(\frac{{2{x^2}y}}{{{{\left( {3{x^{ - 2}}y} \right)}^2}}}\).

Use the law of exponents\({\left( {{b^x}} \right)^y} = {b^{xy}}\), and\({b^x} \cdot {b^y} = {b^{x + y}}\)to simplify the above expression as shown below:

\(\begin{aligned}\frac{{2{x^2}y}}{{{{\left( {3{x^{ - 2}}y} \right)}^2}}} &= \frac{{2{x^2}y}}{{{3^2}{{\left( {{x^{ - 2}}} \right)}^2}{y^2}}}\\ &= \frac{{2{x^2}y}}{{9{x^{ - 4}}{y^2}}}\end{aligned}\)

Simplify further,

\(\begin{aligned}\frac{{2{x^2}y}}{{{{\left( {3{x^{ - 2}}y} \right)}^2}}} &= \frac{{2{x^2}y}}{{9{x^{ - 4}}{y^2}}}\\ &= \frac{2}{9}{x^{2 - \left( { - 4} \right)}}{y^{1 - 2}}\\ &= \frac{2}{9}{x^6}{y^{ - 1}}\\ &= \frac{{2{x^6}}}{{9y}}\end{aligned}\)

Thus,\(\frac{{2{x^2}y}}{{{{\left( {3{x^{ - 2}}y} \right)}^2}}} = \frac{{2{x^6}}}{{9y}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Trees grow faster and form wider rings in warm years and grow more slowly and form narrower rings in cooler years. The figure shows the ring widths of a Siberian pine from 1500 to 2000.

(a) What is the range of the ring width function?

(b) What does the graph tend to say about the temperature of the earth? Does the graph reflect the volcanic eruptions of the mid-19th century?

In a certain country, income tax assessed as follows. There is no tax on income up to \(10,000. Any income over \)10,000 is taxed at a rate of 10%, up to an income of \(20,000. Any income over \)20,000 is taxed at 15%.

(a) Sketch the graph of the tax rate R as a function of the income I.

(b) How much tax is assessed on an income of \(14,000? On \)26,000?

(c) Sketch the graph of the total assessed tax T as a function of the income I.

A student bought a smartwatch that tracks the number of steps she walks throughout the day. The table shows the number of steps recorded t minutes after 3.00 PM on the first day she wore the watch.

t(min)

0

10

20

30

40

Steps

3438

4559

5622

5622

7398

(a) Find the slopes of the secant lines corresponding to given intervals of t. What do these slopes represent?

(i) \(\left( {{\bf{0}},{\bf{40}}} \right)\) (ii) \(\left( {{\bf{10}},{\bf{20}}} \right)\) (iii) \(\left( {{\bf{20}},{\bf{30}}} \right)\)

(b) Estimate the studentโ€™s walking pace, in steps per minute, at 3:20 PM by averaging the slopes of two secant lines.

7-14 determine whether the equation or table defines \(y\) as a function of \(x\).

14.

Evaluate the difference quotient for the given function. Simplify your answer.

\(f\left( x \right) = 4 + 3x - {x^2}\), \(\frac{{f\left( {3 + h} \right) - f\left( 3 \right)}}{h}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free