Chapter 1: Q19E (page 7)
If \(g\left( x \right) = {\bf{3}} + x + {e^x},\) find \({g^{ - 1}}\left( {\bf{4}} \right)\).
Short Answer
The inverse function is \({g^{ - 1}}\left( 4 \right) = 0\).
Chapter 1: Q19E (page 7)
If \(g\left( x \right) = {\bf{3}} + x + {e^x},\) find \({g^{ - 1}}\left( {\bf{4}} \right)\).
The inverse function is \({g^{ - 1}}\left( 4 \right) = 0\).
All the tools & learning materials you need for study success - in one app.
Get started for free7-14 Determine whether the equation or table defines y as a function of x.
\({x^{\bf{2}}} + {\left( {y - {\bf{3}}} \right)^2} = {\bf{5}}\)
39-46 find the domain of the function.
45. \(F\left( p \right) = \sqrt {2 - \sqrt p } \)
For what values of \(x\) is \(g\) continuous?
72. \(g\left( x \right) = \left\{ \begin{array}{l}0\,\,\,\,\,{\mathop{\rm if}\nolimits} \,\,x\,\,{\mathop{\rm is}\nolimits} \,\,\,{\mathop{\rm rational}\nolimits} \\x\,\,\,\,\,{\mathop{\rm if}\nolimits} \,\,x\,\,{\mathop{\rm is}\nolimits} \,\,\,{\mathop{\rm irrational}\nolimits} \end{array} \right.\)
15-18 determine whether the curve is the graph of a function of \(x\). If it is, state the domain and range of the function.
16.
Classify each function as a power function, root function, polynomial (state its degree), rational function, algebraic function, trigonometric function, exponential function, or logarithmic function.
(a) \(f\left( x \right) = {x^{\bf{3}}} + {\bf{3}}{x^{\bf{2}}}\)
(b) \(g\left( t \right) = co{s^{\bf{2}}}t - sint\)
(c) \(r\left( t \right) = {t^{\sqrt 3 }}\)
(d) \(v\left( t \right) = {{\bf{8}}^t}\)
(e) \(y = \frac{{\sqrt x }}{{{x^2} + 1}}\)
(f) \(g\left( u \right) = lo{g_{10}}u\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.