Consider the function \(f\left( x \right) = 2{x^3} - 9{x^2} + 12x - 3\).
Differentiate the function w.r.t. \(x\) twice.
\(\begin{aligned}{c}f'\left( x \right) &= \frac{d}{{dx}}\left( {2{x^3} - 9{x^2} + 12x - 3} \right)\\ &= \frac{d}{{dx}}\left( {2{x^3}} \right) - 9\frac{d}{{dx}}\left( {{x^2}} \right) + 12\frac{d}{{dx}}\left( x \right) + \frac{d}{{dx}}\left( { - 3} \right)\\ &= 6{x^2} - 18x + 12\\f''\left( x \right) &= \frac{d}{{dx}}\left( {6{x^2} - 18x + 12} \right)\\ &= \frac{d}{{dx}}\left( {6{x^2}} \right) - 18\frac{d}{{dx}}\left( x \right) + \frac{d}{{dx}}\left( {12} \right)\\ &= 12x - 18\\ &= 12\left( {x - \frac{3}{2}} \right)\end{aligned}\)
Since \(f''\left( x \right) = 0\) then find the solutions of the functions.
\(\begin{aligned}{c}12\left( {x - \frac{3}{2}} \right) &= 0\\x &= \frac{3}{2}\end{aligned}\)
If \(f''\left( x \right) > 0\) then \(x > \frac{3}{2}\) and if \(f''\left( x \right) < 0\) then \(x < \frac{3}{2}\).
Thus, \(f\) isconcave upward on \(\left( {\frac{3}{2},\infty } \right)\) and concave downward on \(\left( { - \infty ,\frac{3}{2}} \right)\).