The distance traveled in south 120 mi whereas the distance traveled in the west is 50 mi, in two hours.
Using the equation \({z^2} = {x^2} + {y^2}\), find the value of z after two hours.
\(\begin{aligned}{z^2} &= {120^2} + {50^2}\\{z^2} &= 16900\\z &= 130\end{aligned}\)
Substitute 120 for x, 50 for y, 130 for z, 60 for \(\frac{{{\rm{d}}x}}{{{\rm{d}}t}}\), and 25 for \(\frac{{{\rm{d}}y}}{{{\rm{d}}t}}\) in the equation \(\frac{{{\rm{d}}z}}{{{\rm{d}}t}} = \frac{1}{z}\left( {x\frac{{{\rm{d}}x}}{{{\rm{d}}t}} + y\frac{{{\rm{d}}y}}{{{\rm{d}}t}}} \right)\).
\(\begin{aligned}\frac{{{\rm{d}}z}}{{{\rm{d}}t}} &= \frac{1}{{130}}\left( {\left( {120} \right)\left( {60} \right) + \left( {50} \right)\left( {25} \right)} \right)\\ &= \frac{{7200 + 1250}}{{130}}\\ &= 65\;{\rm{mi/h}}\end{aligned}\)
So, the rate of increase of distance in 2 hours is 65 mi/h.