Chapter 1: Q17E (page 7)
Prove the identity.
17. \({\coth ^2}x - 1 = {{\mathop{\rm csch}\nolimits} ^2}x\)
Short Answer
It is proved that \({\coth ^2}x - 1 = {{\mathop{\rm csch}\nolimits} ^2}x\).
Chapter 1: Q17E (page 7)
Prove the identity.
17. \({\coth ^2}x - 1 = {{\mathop{\rm csch}\nolimits} ^2}x\)
It is proved that \({\coth ^2}x - 1 = {{\mathop{\rm csch}\nolimits} ^2}x\).
All the tools & learning materials you need for study success - in one app.
Get started for free39-46 find the domain of the function.
42. \(g\left( t \right) = \sqrt {3 - t} - \sqrt {2 + t} \)
65-70 Find a formula for the described function and state its domain.
66. A rectangle has area 16\({{\mathop{\rm m}\nolimits} ^2}\). Express the perimeter of the rectangle as a function of the length of one of its sides.
49-52 Evaluate \(f\left( { - 3} \right),f\left( 0 \right),\) and \(f\left( 2 \right)\) for the piecewise-defined function. Then sketch the graph of the function.
49. \(f\left( x \right) = \left\{ \begin{aligned}{x^2} + 2\,\,\,{\mathop{\rm if}\nolimits} \,\,x < 0\\x\,\,\,\,\,\,\,\,\,\,\,\,\,{\mathop{\rm if}\nolimits} \,\,x \ge 0\end{aligned} \right.\)
Evaluate \(f\left( { - {\bf{3}}} \right)\), \(f\left( {\bf{0}} \right)\), and \(f\left( {\bf{2}} \right)\) for the piecewise defined function. Then sketch the graph of the function.
\(f\left( x \right) = \left\{ {\begin{aligned}{x + {\bf{1}}}&{{\bf{if}}\;\;x \le - {\bf{1}}}\\{{x^2}}&{{\bf{if}}\;\;x > - {\bf{1}}}\end{aligned}} \right.\)
Find a formula for the quadratic function whose graph isshown.
What do you think about this solution?
We value your feedback to improve our textbook solutions.