Chapter 1: Q13E (page 7)
7-14 determine whether the equation or table defines \(y\) as a function of \(x\).
13.
Short Answer
The table does not define \(y\) as a function of \(x\).
Chapter 1: Q13E (page 7)
7-14 determine whether the equation or table defines \(y\) as a function of \(x\).
13.
The table does not define \(y\) as a function of \(x\).
All the tools & learning materials you need for study success - in one app.
Get started for free13. Find a formula for the cubic function if \(f\left( 1 \right) = 6\), and \(f\left( { - 1} \right) = f\left( 0 \right) = f\left( 2 \right) = 0\).
39-46 find the domain of the function.
41. \(f\left( t \right) = \sqrt(3){{2t - 1}}\)
Classify each function as a power function, root function, polynomial (state its degree), rational function, algebraic function, trigonometric function, exponential function, or logarithmic function.
2. (a) \(f\left( t \right) = \frac{{{\bf{3}}{t^{\bf{2}}} + {\bf{2}}}}{t}\)
(b) \(h\left( r \right) = {\bf{2}}.{{\bf{3}}^r}\)
(c) \(s\left( t \right) = \sqrt {t + {\bf{4}}} \)
(d) \(y = {x^{\bf{4}}} + 5\)
(e) \(g\left( x \right) = \sqrt({\bf{3}}){x}\)
(f) \(y = \frac{{\bf{1}}}{{{x^{\bf{2}}}}}\)
Classify each function as a power function, root function, polynomial (state its degree), rational function, algebraic function, trigonometric function, exponential function, or logarithmic function.
(a) \(f\left( x \right) = {x^{\bf{3}}} + {\bf{3}}{x^{\bf{2}}}\)
(b) \(g\left( t \right) = co{s^{\bf{2}}}t - sint\)
(c) \(r\left( t \right) = {t^{\sqrt 3 }}\)
(d) \(v\left( t \right) = {{\bf{8}}^t}\)
(e) \(y = \frac{{\sqrt x }}{{{x^2} + 1}}\)
(f) \(g\left( u \right) = lo{g_{10}}u\)
49-52 Evaluate \(f\left( { - 3} \right),f\left( 0 \right),\) and \(f\left( 2 \right)\) for the piecewise-defined function. Then sketch the graph of the function.
50. \(f\left( x \right) = \left\{ \begin{aligned}5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\mathop{\rm if}\nolimits} \,\,x < 2\\\frac{1}{2}x - 3\,\,\,{\mathop{\rm if}\nolimits} \,\,x \ge 2\end{aligned} \right.\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.