Chapter 1: Q 17E (page 7)
11-18: Find the differential of the function.
17. \(y = \ln \left( {\sin \theta } \right)\)
Short Answer
The differential of the function is \(dy = \cot \theta d\theta \).
Chapter 1: Q 17E (page 7)
11-18: Find the differential of the function.
17. \(y = \ln \left( {\sin \theta } \right)\)
The differential of the function is \(dy = \cot \theta d\theta \).
All the tools & learning materials you need for study success - in one app.
Get started for freeFor what values of \(x\) is \(g\) continuous?
72. \(g\left( x \right) = \left\{ \begin{array}{l}0\,\,\,\,\,{\mathop{\rm if}\nolimits} \,\,x\,\,{\mathop{\rm is}\nolimits} \,\,\,{\mathop{\rm rational}\nolimits} \\x\,\,\,\,\,{\mathop{\rm if}\nolimits} \,\,x\,\,{\mathop{\rm is}\nolimits} \,\,\,{\mathop{\rm irrational}\nolimits} \end{array} \right.\)
Evaluate the difference quotient for the given function. Simplify your answer.
37. \(f\left( x \right) = \frac{1}{x}\), \(\frac{{f\left( x \right) - f\left( a \right)}}{{x - a}}\)
13. Find a formula for the cubic function if \(f\left( 1 \right) = 6\), and \(f\left( { - 1} \right) = f\left( 0 \right) = f\left( 2 \right) = 0\).
Find the domain of the function.
5. \(f\left( x \right) = \frac{{cosx}}{{1 - sinx}}\)
65-70 Find a formula for the described function and state its domain.
67. Express the area of an equivalent triangle as a function of the length of a side.
What do you think about this solution?
We value your feedback to improve our textbook solutions.