Chapter 3: Q9E (page 173)
Differentiate the function.
9.\(g\left( x \right) = \ln \left( {x{e^{ - 2x}}} \right)\).
Short Answer
The differentiation of\(g\left( x \right) = \ln \left( {x{e^{ - 2x}}} \right)\) is \(\frac{1}{x} - 2\).
Chapter 3: Q9E (page 173)
Differentiate the function.
9.\(g\left( x \right) = \ln \left( {x{e^{ - 2x}}} \right)\).
The differentiation of\(g\left( x \right) = \ln \left( {x{e^{ - 2x}}} \right)\) is \(\frac{1}{x} - 2\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDifferentiate the function.
23.\(h\left( x \right) = {e^{{x^2} + \ln x}}\)
Question 3–30: Differentiate.
11.
27-30: Find an equation of the tangent line to the curve at the given point.
30. \(y = \frac{{1 + \sin x}}{{\cos x}},\left( {\pi , - 1} \right)\)
1-22 Differentiate.
15.\(y = \frac{x}{{2 - \tan x}}\)
Find \(f'\left( x \right)\) and \(f''\left( x \right)\).
33.\(f\left( x \right) = \frac{x}{{{x^2} - 1}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.