Chapter 3: Q8E (page 173)
Write \(2{e^{2x}} + 3{e^{ - 2x}}\) in terms of \(\sinh 2x\)and\(\cosh 2x\).
Short Answer
The expression in terms of \(\sin 2x\) and \(\cos 2x\)is;\(2{e^{2x}} + 3{e^{ - 3x}} = - \sinh 2x + 5\cosh 2x\).
Chapter 3: Q8E (page 173)
Write \(2{e^{2x}} + 3{e^{ - 2x}}\) in terms of \(\sinh 2x\)and\(\cosh 2x\).
The expression in terms of \(\sin 2x\) and \(\cos 2x\)is;\(2{e^{2x}} + 3{e^{ - 3x}} = - \sinh 2x + 5\cosh 2x\).
All the tools & learning materials you need for study success - in one app.
Get started for free1–38 ■ Find the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, consider using it. If l’Hospital’s Rule doesn’t apply, explain why.
2. \(\mathop {lim}\limits_{x \to 2} \frac{{{x^2} + x - 6}}{{x - 2}}\).
7-52: Find the derivative of the function.
13. \(f\left( \theta \right) = \cos \left( {{\theta ^2}} \right)\)
1-22: Differentiate.
2. \(f\left( x \right) = \tan x - 4\sin x\)
Find the derivative of the function:
29. \(r\left( t \right) = {10^{2\sqrt t }}\)
53-56 Find \(y'\) and \(y''\).
54. \(y = {\left( {{\bf{1}} + \sqrt x } \right)^{\bf{3}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.