Chapter 3: Q8E (page 173)
5–22: Find\(dy/dx\)by implicit differentiation.
8.\({x^3} - x{y^2} + {y^3} = 1\)
Short Answer
By Implicit differentiation, \(y' = \frac{{{y^2} - 3{x^2}}}{{y\left( {3y - 2x} \right)}}\).
Chapter 3: Q8E (page 173)
5–22: Find\(dy/dx\)by implicit differentiation.
8.\({x^3} - x{y^2} + {y^3} = 1\)
By Implicit differentiation, \(y' = \frac{{{y^2} - 3{x^2}}}{{y\left( {3y - 2x} \right)}}\).
All the tools & learning materials you need for study success - in one app.
Get started for free53-56 Find \(y'\) and \(y''\).
55. \(y = \sqrt {{\bf{cos}}\,x} \)
Find \(f'\left( x \right)\) and \(f''\left( x \right)\).
34.\(f\left( x \right) = \frac{x}{{1 + \sqrt x }}\)
Differentiate the function.
8. \(y = \frac{1}{{\ln x}}\)
Find equations of the tangent line to the given curve at the specific point.
35. \(y = \frac{{{x^2}}}{{1 + x}}\), \(\left( {1,\frac{1}{2}} \right)\)
Find equations of the tangent line to the given curve at the specific point.
36. \(y = \frac{{1 + x}}{{1 + {e^x}}}\), \(\left( {0,\frac{1}{2}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.