It is given that \(h = {f^g}\).
Take log both the sides:
\(\ln h = g\ln f\)
Now, differentiate both the sides with respect to \(x\) as follows:
\(\begin{aligned}\frac{d}{{dx}}\left( {\ln h} \right) &= \frac{d}{{dx}}\left( {g \cdot \ln f} \right)\\\frac{1}{h} \cdot \frac{d}{{dx}}\left( h \right) &= g \cdot \frac{1}{f} \cdot \frac{d}{{dx}}\left( f \right) + \left( {\ln f} \right)\frac{d}{{dx}}\left( g \right)\\h' &= h\left( {g \cdot \frac{1}{f} \cdot f' + \left( {\ln f} \right)g'} \right)\\h' &= {f^g}\left( {g \cdot \frac{1}{f} \cdot f' + \left( {\ln f} \right) \cdot g'} \right)\\h' &= g \cdot {f^{g - 1}} \cdot f' + \left( {\ln f} \right) \cdot {f^g} \cdot g'\end{aligned}\)
Hence, it is proved that \(h' = g \cdot {f^{g - 1}} \cdot f' + \left( {\ln f} \right) \cdot {f^g} \cdot g'\).