Differentiate \(s\) with respect to \(t\) using chain rule as follows:
\(\begin{aligned}\frac{{ds}}{{dt}} &= \frac{d}{{dt}}\left( {A\cos \left( {\omega t + \delta } \right)} \right)\\ &= A\left( { - \sin \left( {\omega t + \delta } \right)} \right)\frac{d}{{dt}}\left( {\omega t + \delta } \right)\\ &= - A\sin \left( {\omega t + \delta } \right)\left( \omega \right)\\ &= - \omega A\sin \left( {\omega t + \delta } \right)\end{aligned}\)
Hence, the velocity of the particle at time \(t\) is \( - \omega A\sin \left( {\omega t + \delta } \right)\).
(b)
The velocity of the particle equal to \(0\) means that \( - \omega A\sin \left( {\omega t + \delta } \right) = 0\). But, \(A \ne 0\) and \(\omega \ne 0\). So, \(\sin \left( {\omega t + \delta } \right) = 0\). Solve it as follows:
\(\begin{aligned}\sin \left( {\omega t + \delta } \right) &= 0\\\omega t + \delta &= n\pi \\\omega t &= n\pi - \delta \\t &= \frac{{n\pi - \delta }}{\omega }\end{aligned}\)
Hence, the velocity is \(0\) at \(t = \frac{{n\pi - \delta }}{\omega }\).