Chapter 3: Q85E (page 173)
Use the formula in Exercise 83.
85. If \(f\left( x \right) = x + {e^x}\), find \({\left( {{f^{ - 1}}} \right)^\prime }\left( 1 \right)\).
Short Answer
The value is \(\frac{1}{2}\).
Chapter 3: Q85E (page 173)
Use the formula in Exercise 83.
85. If \(f\left( x \right) = x + {e^x}\), find \({\left( {{f^{ - 1}}} \right)^\prime }\left( 1 \right)\).
The value is \(\frac{1}{2}\).
All the tools & learning materials you need for study success - in one app.
Get started for free27-34: Explain using theorem 4,5,7, and 9, why the function is continuous at every number in its domain. State the domain.
34. \(g\left( t \right) = {\cos ^{ - 1}}\left( {{e^t} - 1} \right)\)
Find the derivative of the function:
22. \(G\left( z \right) = {\left( {1 - 4z} \right)^2}\sqrt {{z^2} + 1} \)
Differentiate.
29. \(f\left( x \right) = \frac{x}{{x + \frac{c}{x}}}\)
Differentiate the function.
21.\(y = \ln \left( {{e^{ - x}} + x{e^{ - x}}} \right)\)
Find the derivative of the function.
40. \(G\left( z \right) = {\left( {1 + {\rm{co}}{{\rm{s}}^2}z} \right)^3}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.