Chapter 3: Q84E (page 173)
Find the 1000th derivative of \(f\left( x \right) = x{e^{ - x}}\).
Short Answer
The 1000th derivative of the function is \({f^{\left( {1000} \right)}}\left( x \right) = \left( {x - 1000} \right){e^{ - x}}\).
Chapter 3: Q84E (page 173)
Find the 1000th derivative of \(f\left( x \right) = x{e^{ - x}}\).
The 1000th derivative of the function is \({f^{\left( {1000} \right)}}\left( x \right) = \left( {x - 1000} \right){e^{ - x}}\).
All the tools & learning materials you need for study success - in one app.
Get started for free1-22 Differentiate.
10. \(g\left( \theta \right) = {e^\theta }\left( {\tan \theta - \theta } \right)\)
Find the derivative of the function.
14. \(g\left( \theta \right) = {\cos ^2}\theta \)
7-52: Find the derivative of the function
10. \(f\left( x \right) = \frac{1}{{\sqrt(3){{{x^2} - 1}}}}\)
Differentiate the function.
11.\(F\left( t \right) = {\left( {\ln t} \right)^2}\sin t\)
Use the method of Exercise 57 to compute \(Q'\left( {\bf{0}} \right)\), where
\(Q\left( x \right) = \frac{{{\bf{1}} + x + {x^{\bf{2}}} + x{e^x}}}{{{\bf{1}} - x + {x^{\bf{2}}} - x{e^x}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.