(a)
Let \(y = {\sec ^{ - 1}}x\). This implies, \(\sec y = x\). Differentiate both the sides of the above equation with respect to \(x\) as follows:
\(\begin{aligned}\frac{d}{{dx}}\left( {\sec y} \right) & = \frac{d}{{dx}}\left( x \right)\\\sec y\tan y\frac{{dy}}{{dx}} & = 1\\\frac{{dy}}{{dx}} & = \frac{1}{{\sec y\tan y}}\\\frac{{dy}}{{dx}} & = \frac{1}{{\sec y\sqrt {{{\sec }^2}y - 1} }}\\\frac{d}{{dx}}\left( {{{\sec }^{ - 1}}x} \right) &= \frac{1}{{x\sqrt {{x^2} - 1} }}\end{aligned}\)
Here, \(\tan y > 0\), when \(0 < y < \frac{\pi }{2}\) or \(\pi < y < \frac{{3\pi }}{2}\).
Hence, the formula for \(\frac{d}{{dx}}\left( {{{\sec }^{ - 1}}x} \right)\) is proved.
(b)
Let \(y = {\sec ^{ - 1}}x\). This implies, \(\sec y = x\). Differentiate both the sides of the above equation with respect to \(x\) as follows:
\(\begin{aligned}\frac{d}{{dx}}\left( {\sec y} \right) & = \frac{d}{{dx}}\left( x \right)\\\sec y\tan y\frac{{dy}}{{dx}} & = 1\\\frac{{dy}}{{dx}} & = \frac{1}{{\sec y\tan y}}\end{aligned}\)
Here, by trigonometric identity:
\(\begin{array}{l}{\tan ^2}y = {\sec ^2}y - 1\\{\tan ^2}y = {x^2} - 1\\\tan y = \pm \sqrt {{x^2} - 1} \end{array}\)
In the interval \(\left( {0,\frac{\pi }{2}} \right)\), \(\tan y \ge 0\) and \(x \ge 1\). So, \(\sec y = x = \left| x \right|\). That implies:
\(\begin{aligned}\frac{{dy}}{{dx}} & = \frac{1}{{x\sqrt {{x^2} - 1} }}\\ & = \frac{1}{{\left| x \right|\sqrt {{x^2} - 1} }}\end{aligned}\)
In the interval \(\left( {\frac{\pi }{2},\pi } \right)\), \(\tan y = - \sqrt {{x^2} - 1} \) and \(x \le - 1\). So, \(\left| x \right| = - x\). That implies:
\(\begin{aligned}\frac{{dy}}{{dx}} & = \frac{1}{{x\left( { - \sqrt {{x^2} - 1} } \right)}}\\ & = \frac{1}{{ - x\left( {\sqrt {{x^2} - 1} } \right)}}\\ & = \frac{1}{{\left| x \right|\left( {\sqrt {{x^2} - 1} } \right)}}\end{aligned}\)
Hence, it is proved.