Use the product rule and the chain rule to differentiate the function \(F\left( x \right)\) as shown below:
\(\begin{aligned}F'\left( x \right) &= \frac{d}{{dx}}f\left( {xf\left( {xf\left( x \right)} \right)} \right)\\ &= f'\left( {xf\left( {xf\left( x \right)} \right)} \right)\frac{d}{{dx}}\left( {xf\left( {xf\left( x \right)} \right)} \right)\\ &= f'\left( {xf\left( {xf\left( x \right)} \right)} \right) \cdot \left( {x \cdot \frac{d}{{dx}}\left( {f\left( {xf\left( x \right)} \right)} \right) + f\left( {xf\left( x \right)} \right)\frac{d}{{dx}}x} \right)\\ &= f'\left( {xf\left( {xf\left( x \right)} \right)} \right) \cdot \left( {x\left( {f'\left( {xf\left( x \right)} \right)} \right) \cdot \frac{d}{{dx}}\left( {xf\left( x \right)} \right) + f\left( {xf\left( x \right)} \right) \cdot 1} \right)\\ &= f'\left( {xf\left( {xf\left( x \right)} \right)} \right) \cdot \left( {x\left( {f'\left( {xf\left( x \right)} \right)} \right) \cdot \left( {x\frac{d}{{dx}}f\left( x \right) + f\left( x \right)\frac{d}{{dx}}x} \right) + f\left( {xf\left( x \right)} \right)} \right)\\ &= f'\left( {xf\left( {xf\left( x \right)} \right)} \right) \cdot \left( {x\left( {f'\left( {xf\left( x \right)} \right)} \right) \cdot \left( {xf'\left( x \right) + f\left( x \right) \cdot 1} \right) + f\left( {xf\left( x \right)} \right)} \right)\end{aligned}\)
Use the given values to determine the value of \(F'\left( 1 \right)\) as shown below:
\(\begin{aligned}F'\left( 1 \right) &= f'\left( {f\left( {f\left( 1 \right)} \right)} \right) \cdot \left( {\left( {f'\left( {f\left( 1 \right)} \right)} \right) \cdot \left( {f'\left( 1 \right) + f\left( 1 \right) \cdot 1} \right) + f\left( {f\left( 1 \right)} \right)} \right)\\ &= f'\left( {f\left( 2 \right)} \right) \cdot \left( {\left( {f'\left( 2 \right)} \right) \cdot \left( {4 + 2} \right) + f\left( 2 \right)} \right)\\ &= f'\left( 3 \right) \cdot \left( {5 \cdot 6 + 3} \right)\\ &= 6 \cdot 33\\ &= 198\end{aligned}\)
Thus, the value of \(F'\left( 1 \right)\) is 198.