Chapter 3: Q7E (page 173)
Write \(8\sinh x + 5\cosh x\) in terms of \({e^x}\), and\({e^{ - x}}\).
Short Answer
The expression \(8\sinh x + 5\cosh x\) in terms of \({e^x}\) and \({e^{ - x}}\) is \(\frac{{13}}{2}{e^x} - \frac{{13}}{2}{e^{ - x}}\).
Chapter 3: Q7E (page 173)
Write \(8\sinh x + 5\cosh x\) in terms of \({e^x}\), and\({e^{ - x}}\).
The expression \(8\sinh x + 5\cosh x\) in terms of \({e^x}\) and \({e^{ - x}}\) is \(\frac{{13}}{2}{e^x} - \frac{{13}}{2}{e^{ - x}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind equations of the tangent line and normal line to the given curve at the specific point.
37. \(y = \frac{{3x}}{{1 + 5{x^2}}}\), \(\left( {1,\frac{1}{2}} \right)\)
Find the derivative of the function:
24. \(y = {\left( {x + \frac{1}{x}} \right)^5}\)
Differentiate the function.
7. \(f\left( x \right) = \ln \frac{1}{x}\)
1-22: Differentiate.
1. \(f\left( x \right) = 3\sin x - 2\cos x\)
Differentiate the function.
13. \(y = {\log _8}\left( {{x^2} + 3x} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.