Chapter 3: Q7E (page 173)
1-22 Differentiate.
7. \(y = sec\theta tan\theta \)
Short Answer
The differentiation of the function \(y = \sec \theta \tan \theta \) is \(y' = \sec \theta \left( {2{{\sec }^2}\theta - 1} \right)\).
Chapter 3: Q7E (page 173)
1-22 Differentiate.
7. \(y = sec\theta tan\theta \)
The differentiation of the function \(y = \sec \theta \tan \theta \) is \(y' = \sec \theta \left( {2{{\sec }^2}\theta - 1} \right)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDifferentiate the function.
14. \(y = {\log _{10}}\sec x\)
Write the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
5. \(y = {e^{\sqrt x }}\)
Differentiate.
29. \(f\left( x \right) = \frac{x}{{x + \frac{c}{x}}}\)
Differentiate the function.
5.\(f\left( x \right) = \sin \left( {\ln x} \right)\)
Find the derivative of the function:
25. \(y = {e^{\tan \theta }}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.