Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(r\left( x \right) = f\left( {g\left( {h\left( x \right)} \right)} \right)\), where \(h\left( 1 \right) = 2\), \(g\left( 2 \right) = 3\), \(h'\left( 1 \right) = 4\), \(g'\left( 2 \right) = 5\), and \(f'\left( 3 \right) = 6\). Find \(r'\left( 1 \right)\).

Short Answer

Expert verified

The value of \(r'\left( 1 \right)\) is 120.

Step by step solution

01

The Chain Rule

The composite function \(F = f \circ g\), or \(F\left( x \right) = f\left( {g\left( x \right)} \right)\) is differentiable at \(x\) and \(F'\) is obtained as:

\(F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\)

In Leibniz notation, the derivative is shown below:

\(\frac{{dy}}{{dx}} = \frac{{dy}}{{du}}\frac{{du}}{{dx}}\)

02

Determine the value of \(r'\left( 1 \right)\)

Use the chain rule to differentiate the function \(r\left( x \right)\) as shown below:

\(\begin{aligned}r'\left( x \right) &= \frac{d}{{dx}}f\left( {g\left( {h\left( x \right)} \right)} \right)\\ &= f'\left( {g\left( {h\left( x \right)} \right)} \right) \cdot \frac{d}{{dx}}\left( {g\left( {h\left( x \right)} \right)} \right)\\ &= f'\left( {g\left( {h\left( x \right)} \right)} \right) \cdot g'\left( {h\left( x \right)} \right) \cdot \frac{d}{{dx}}\left( {h\left( x \right)} \right)\\ &= f'\left( {g\left( {h\left( x \right)} \right)} \right) \cdot g'\left( {h\left( x \right)} \right) \cdot h'\left( x \right)\end{aligned}\)

Use the given values to evaluate the values of \(r'\left( 1 \right)\) as shown below:

\(\begin{aligned}r'\left( 1 \right) &= f'\left( {g\left( {h\left( 1 \right)} \right)} \right) \cdot g'\left( {h\left( 1 \right)} \right) \cdot h'\left( 1 \right)\\ &= f'\left( {g\left( 2 \right)} \right) \cdot g'\left( 2 \right) \cdot 4\\ &= f'\left( 3 \right) \cdot 5 \cdot 4\\ &= 6 \cdot 5 \cdot 4\\ &= 120\end{aligned}\)

Thus, the value of \(r'\left( 1 \right)\) is 120.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free