Thegiven polynomial is \(y = a{x^3} + b{x^2} + cx + d\)
Differentiating with respect to\(x\)as:
\(y'\left( x \right) = 3a{x^2} + 2bx + c\)
Now, for the points \(\left( { - 2,6} \right)\,\& \,\left( {2,0} \right)\), we have:
\(\begin{align}y\left| {_{x = - 2}} \right. &= 6\\ - 8a + 4b - 2c + d &= 6\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,................\left( {{\rm{eq}}{\rm{.1}}} \right)\\y\left| {_{x = 2}} \right. &= 0\\8a + 4b + 2c + d &= 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,................\left( {{\rm{eq}}{\rm{.2}}} \right)\end{align}\)
For horizontal tangents at points \(\left( { - 2,6} \right)\,\& \,\left( {2,0} \right)\), we have:
\(\begin{align}y'\left( x \right)\left| {_{x = - 2}} \right. &= 0\\12a - 4b + c &= 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,................\left( {{\rm{eq}}{\rm{.3}}} \right)\\y'\left( x \right)\left| {_{x = 2}} \right. &= 0\\12a + 4b + c &= 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,................\left( {{\rm{eq}}{\rm{.4}}} \right)\end{align}\)