The differentiation of \(y\) is:
\(\begin{aligned}\frac{{{\rm{d}}y}}{{{\rm{d}}x}} &= \frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\tan }^{ - 1}}\left( {x - \sqrt {1 + {x^2}} } \right)} \right)\\ &= \frac{1}{{1 + {{\left( {x - \sqrt {1 + {x^2}} } \right)}^2}}} \times \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {x - \sqrt {1 + {x^2}} } \right)\\ &= \frac{1}{{1 + {x^2} + \left( {1 + {x^2}} \right) - 2x\sqrt {1 + {x^2}} }} \times \left( {1 - \frac{1}{{2\sqrt {1 + {x^2}} }} \times \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {1 + {x^2}} \right)} \right)\\ &= \frac{1}{{2\left( {\left( {1 + {x^2}} \right) - x\sqrt {{x^2} + 1} } \right)}} \times \left( {\frac{{\sqrt {1 + {x^2}} - x}}{{\sqrt {1 + {x^2}} }}} \right)\end{aligned}\)
Simplify further,
\(\begin{aligned}\frac{{{\rm{d}}y}}{{{\rm{d}}x}} &= \frac{{\sqrt {1 + {x^2}} - x}}{{2\left( {\sqrt {1 + {x^2}} \left( {1 + {x^2}} \right) - x\left( {{x^2} + 1} \right)} \right)}}\\ &= \frac{{\sqrt {1 + {x^2}} - x}}{{2\left( {1 + {x^2}} \right)\left( {\sqrt {1 + {x^2}} - x} \right)}}\\ &= \frac{1}{{2\left( {1 + {x^2}} \right)}}\end{aligned}\)
Thus, the derivative of the function \(y\) is \(\frac{1}{{2\left( {1 + {x^2}} \right)}}\).