Now,
\(\begin{align}P''\left( 2 \right) &= 2\\2a &= 2\\a &= 1\end{align}\)
Similarly,
\(\begin{align}P'\left( 2 \right) &= 3\\2a\left( 2 \right) + b &= 3\\4 + b &= 3\\b &= - 1\end{align}\)
And,
\(\begin{align}P\left( 2 \right) &= 5\\\left( 1 \right){\left( 2 \right)^2} + \left( { - 1} \right)\left( 2 \right) + c &= 5\\4 - 2 + c &= 5\\c &= 3\end{align}\)
So, the second-degree polynomial can be given as:
\(\begin{align}P\left( x \right) &= a{x^2} + bx + c\\ &= {x^2} - x + 3\end{align}\)
Hence, the required second-degree polynomial is \(P\left( x \right) = {x^2} - x + 3\).