The differentiation of \(f\left( z \right)\) with respect to x is:
\(\begin{aligned}f'\left( z \right) &= \frac{{\rm{d}}}{{{\rm{d}}z}}\left( {{e^{\arcsin \left( {{z^2}} \right)}}} \right)\\ &= {e^{\arcsin \left( {{z^2}} \right)}} \times \frac{{\rm{d}}}{{{\rm{d}}z}}\left( {\arcsin \left( {{z^2}} \right)} \right)\\ &= {e^{\arcsin \left( {{z^2}} \right)}}\left( {\frac{1}{{\sqrt {1 - {{\left( {{z^2}} \right)}^2}} }}} \right) \times \frac{{\rm{d}}}{{{\rm{d}}z}}\left( {{z^2}} \right)\\ &= \frac{{{e^{\arcsin \left( {{z^2}} \right)}}}}{{\sqrt {1 - {z^4}} }}\left( {2z} \right)\\ &= \frac{{\left( {2z} \right){e^{\arcsin \left( {{z^2}} \right)}}}}{{\sqrt {1 - {z^4}} }}\end{aligned}\)
Thus, the derivative of the function \(f\left( z \right)\) is \(\frac{{\left( {2z} \right){e^{\arcsin \left( {{z^2}} \right)}}}}{{\sqrt {1 - {z^4}} }}\).