Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Reciprocal rule If g is differentiable, the Reciprocal Rule says that

\(\frac{{\bf{d}}}{{{\bf{d}}x}}\left( {\frac{{\bf{1}}}{{g\left( x \right)}}} \right) = - \frac{{g'\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^{\bf{2}}}}}\)

(a)Use the Quotient rule to prove the Reciprocal rule.

(b)Use the Reciprocal Rule to differentiate the function in Exercise 14.

(c)Use the Recirpocal Rule to verify that the Power Rule is valid for negative integers, that is,

\(\frac{{\bf{d}}}{{{\bf{d}}x}}\left( {{x^{ - n}}} \right) = - n{x^{ - n - {\bf{1}}}}\)

For all positive integers n.

Short Answer

Expert verified

(a) The Reciprocal rule is proved using the quotient rule.

(b) The derivative of \(F\left( x \right)\) is \( - \frac{{6{x^2} - 12x}}{{{{\left( {2{x^3} - 6{x^2} + 5} \right)}^2}}}\).

(c) The power rule is valid for all integers n.

Step by step solution

01

(a) Step 1: Prove Reciprocal Rule using Quotient Rule

The equation for the Quotient rule is \(\left( {\frac{f}{g}} \right)' = \frac{{gf' - fg'}}{{{{\left( g \right)}^2}}}\).

Differentiate the expression \(\frac{1}{{g\left( x \right)}}\) using the Quotient Rule.

\(\begin{aligned}\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\frac{1}{{g\left( x \right)}}} \right) &= \frac{{g\left( x \right)\frac{{\rm{d}}}{{{\rm{d}}x}}\left( 1 \right) - 1\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {g\left( x \right)} \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\\ &= \frac{{0 - g'\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\\ &= - \frac{{g'\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\end{aligned}\)

Hence, the reciprocal rule is proved using the Quotient Rule.

02

(b) Step 2: Differentiate the function \(F\left( x \right) = \frac{{\bf{1}}}{{{\bf{2}}{x^{\bf{3}}} - {\bf{6}}{x^{\bf{2}}} + {\bf{5}}}}\) using reciprocal rule

Let, for the function \(F\left( x \right) = \frac{1}{{2{x^3} - 6{x^2} + 5}}\), \(g\left( x \right) = 2{x^3} - 6{x^2} + 5\).

Differentiate the function \(g\left( x \right)\).

\(\begin{aligned}g'\left( x \right) &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {2{x^3} - 6{x^2} + 5} \right)\\ &= 6{x^2} - 12x\end{aligned}\)

The derivative of \(F\left( x \right)\) using a reciprocal rule is:

\(\begin{aligned}F'\left( x \right) &= - \frac{{g'\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\\ &= - \frac{{6{x^2} - 12x}}{{{{\left( {2{x^3} - 6{x^2} + 5} \right)}^2}}}\end{aligned}\)

So, the derivative of \(F\left( x \right)\) is \( - \frac{{6{x^2} - 12x}}{{{{\left( {2{x^3} - 6{x^2} + 5} \right)}^2}}}\).

03

(c) Step 3: Find the derivative of \(\frac{{\bf{d}}}{{{\bf{d}}x}}\left( {{x^{ - n}}} \right) =  - n{x^{ - n - {\bf{1}}}}\)

Let \(g\left( x \right) = {x^n}\). Then derivative of \(g\left( x \right)\) is:

\(\begin{aligned}g\left( x \right) &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {{x^n}} \right)\\ &= n{x^{n - 1}}\end{aligned}\)

The derivative of \({x^{ - n}}\) can be calculated as;

\(\begin{aligned}\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {{x^{ - n}}} \right) &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\frac{1}{{g\left( x \right)}}} \right)\\ &= - \frac{{g'\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\\ &= - \frac{{n{x^{n - 1}}}}{{{{\left( {{x^n}} \right)}^2}}}\\ &= - \frac{{n{x^{n - 1}}}}{{{x^{2n}}}}\\ &= - n{x^{ - n - 1}}\end{aligned}\)

Hence proved, the power rule is valid for all integers n.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free