Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) If \(F\left( x \right) = f\left( x \right)g\left( x \right)\), where fand ghave derivative of all orders, show that \(F'' = f''g + {\bf{2}}f'g' + fg''\).

(b) Find the similar formulas for \(F'''\), and \({F^{\left( {\bf{4}} \right)}}\).

(c) Guess a formula for \({F^{\left( n \right)}}\).

Short Answer

Expert verified

(a)The equation \(F'' = f''g + 2f'g' + fg''\) is true.

(b)The value of \(F''' = f'''g + 3f''g' + 3f'g'' + fg'''\) and \({F^{\left( 4 \right)}} = {f^{\left( 4 \right)}}g + 4f'''g' + 6f''g'' + 4f'g''' + f{g^{\left( 4 \right)}}\)

(c) \({F^{\left( n \right)}} = {f^{\left( n \right)}}g + n{f^{\left( {n - 1} \right)}}g' + \left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right){f^{\left( {n - 2} \right)}}g'' + ... + \left( {\begin{array}{*{20}{c}}n\\k\end{array}} \right){f^{\left( {n - k} \right)}}{g^{\left( k \right)}} + .... + nf'{g^{\left( {n - 1} \right)}} + f{g^{\left( n \right)}}\)

Step by step solution

01

(a) Step 1: Find the value of \(F''\)

The value of \(F'\) is calculated using the Product Rule.

\(\begin{aligned}F' &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {fg} \right)\\ &= fg' + f'g\end{aligned}\)

Differentiatethe equation again to find \(F''\).

\(\begin{aligned}F'' &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {fg' + f'g} \right)\\ &= fg'' + g'f' + f'g' + gf''\\ &= f''g + 2f'g' + fg''\end{aligned}\)

So, the value of \(F''\) is \(f''g + 2f'g' + fg''\).

02

(b) Step 2: Find the value of \(F'''\) and \({F^{\left( {\bf{4}} \right)}}\) 

Differentiate the equation \(F'' = f''g + 2f'g' + fg''\).

\(\begin{aligned}F''' &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {f''g + 2f'g' + fg''} \right)\\ &= f''g' + gf''' + 2f'g'' + 2g'f'' + fg''' + g''f'\\ &= f'''g + 3f''g' + 3f'g'' + fg'''\end{aligned}\)

Differentiate the equation \(F''' = f'''g + 3f''g' + 3f'g'' + fg'''\).

\(\begin{aligned}{F^{\left( 4 \right)}} &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {f'''g + 3f''g' + 3f'g'' + fg'''} \right)\\ &= {f^{\left( 4 \right)}}g + f'''g' + 3f'''g' + 3f''g'' + 3f''g'' + 3f'g''' + f'g''' + f{g^{\left( 4 \right)}}\\ &= {f^{\left( 4 \right)}}g + 4f'''g' + 6f''g'' + 4f'g''' + f{g^{\left( 4 \right)}}\end{aligned}\)

So, the value of \(F''' = f'''g + 3f''g' + 3f'g'' + fg'''\), and \({F^{\left( 4 \right)}} = {f^{\left( 4 \right)}}g + 4f'''g' + 6f''g'' + 4f'g''' + f{g^{\left( 4 \right)}}\).

03

(c) Step 3: Guess the formula for \({F^{\left( n \right)}}\)

Using the Binomial Theorem, the guess can be made for \({F^{\left( n \right)}}\).

\({F^{\left( n \right)}} = {f^{\left( n \right)}}g + n{f^{\left( {n - 1} \right)}}g' + \left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right){f^{\left( {n - 2} \right)}}g'' + ... + \left( {\begin{array}{*{20}{c}}n\\k\end{array}} \right){f^{\left( {n - k} \right)}}{g^{\left( k \right)}} + .... + nf'{g^{\left( {n - 1} \right)}} + f{g^{\left( n \right)}}\)

The expression \(\left( {\begin{array}{*{20}{c}}n\\k\end{array}} \right)\) represents \(\frac{{n!}}{{k!\left( {n - k} \right)!}}\).

So, the expression for \({F^{\left( n \right)}}\) is \({f^{\left( n \right)}}g + n{f^{\left( {n - 1} \right)}}g' + \left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right){f^{\left( {n - 2} \right)}}g'' + ... + \left( {\begin{array}{*{20}{c}}n\\k\end{array}} \right){f^{\left( {n - k} \right)}}{g^{\left( k \right)}} + .... + nf'{g^{\left( {n - 1} \right)}} + f{g^{\left( n \right)}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free