Chapter 3: Q5E (page 173)
5–22: Find\(dy/dx\)by implicit differentiation.
5.\({x^2} - 4xy + {y^2} = 4\)
Short Answer
By Implicit differentiation, \(y' = \frac{{2y - x}}{{y - 2x}}\).
Chapter 3: Q5E (page 173)
5–22: Find\(dy/dx\)by implicit differentiation.
5.\({x^2} - 4xy + {y^2} = 4\)
By Implicit differentiation, \(y' = \frac{{2y - x}}{{y - 2x}}\).
All the tools & learning materials you need for study success - in one app.
Get started for free53-56 Find \(y'\) and \(y''\).
54. \(y = {\left( {{\bf{1}} + \sqrt x } \right)^{\bf{3}}}\)
Differentiate the function.
12.\(p\left( t \right) = \ln \sqrt {{t^2} + 1} \).
Find the derivative of the function.
41. \(y = {\rm{si}}{{\rm{n}}^2}\left( {{x^2} + 1} \right)\)
Write the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
6. \(y = \sqrt(3){{{e^x} + 1}}\)
1–38 ■ Find the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, consider using it. If l’Hospital’s Rule doesn’t apply, explain why.
6.\(\mathop {lim}\limits_{x \to 0} \frac{{{x^2}}}{{1 - cosx}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.