Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

57: Show that the ellipse \({x^2}/{a^2} + {y^2}/{b^2} = 1\)and the hyperbola \({x^2}/{A^2} - {y^2}/{{\bf{B}}^2} = 1\)are orthogonal trajectories if \({A^2} < {a^2}\) and \({a^2} - {b^2} = {A^2} + {B^2}\) (so the ellipse and hyperbola have the same foci).

Short Answer

Expert verified

It is proved that ellipse and hyperbola are orthogonal trajectories if \({A^2} < {a^2}\), and\({a^2} - {b^2} = {A^2} + {B^2}\).

Step by step solution

01

Graph the curves

Plot the curves of ellipse and hyperbola. The graph is shown below.

02

Use Implicit differentiation to find the slope of both curves

Differentiate both sides of the equation with respect to \(x\).

\(\begin{aligned}\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} &= 1\\\frac{{2x}}{{{a^2}}} + \frac{{2yy'}}{{{b^2}}} &= 0\\\frac{{2yy'}}{{{b^2}}} &= - \frac{{2x}}{{{a^2}}}\\\frac{{yy'}}{{{b^2}}} &= - \frac{x}{{{a^2}}}\\y' &= - \frac{{x{b^2}}}{{y{a^2}}}\\{m_1} &= - \frac{{x{b^2}}}{{y{a^2}}}\;\;\;\; \ldots \left( 1 \right)\end{aligned}\)

And,

\(\begin{aligned}{c}\frac{{{x^2}}}{{{A^2}}} - \frac{{{y^2}}}{{{B^2}}} &= 1\\\frac{{2x}}{{{A^2}}} - \frac{{2yy'}}{{{B^2}}} &= 0\\\frac{{2yy'}}{{{B^2}}} &= \frac{{2x}}{{{A^2}}}\\\frac{{yy'}}{{{B^2}}} &= \frac{x}{{{A^2}}}\\y' &= \frac{{x{B^2}}}{{y{A^2}}}\\{m_2} &= \frac{{x{B^2}}}{{y{A^2}}}\;\;\;\; \ldots \left( 2 \right)\end{aligned}\)

03

Find the value of \({m_1}{m_2}\).

Substitute the above slope values into \({m_1}{m_2}\) and simplify.

\(\begin{aligned}{m_1}{m_2} &= - \frac{{x{b^2}}}{{y{a^2}}} \cdot \frac{{x{B^2}}}{{y{A^2}}}\\ &= - \frac{{{b^2}{B^2}}}{{{a^2}{A^2}}} \cdot \frac{{{x^2}}}{{{y^2}}}\;\; \ldots \left( 3 \right)\end{aligned}\)

04

Simplify further the expression

Subtract the equation \(\frac{{{x^2}}}{{{A^2}}} - \frac{{{y^2}}}{{{B^2}}} = 1\) from \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) to determine the value of \(\frac{{{x^2}}}{{{y^2}}}\).

\(\begin{aligned}{c}\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \left( {\frac{{{x^2}}}{{{A^2}}} - \frac{{{y^2}}}{{{B^2}}}} \right) &= 1 - 1\\\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{x^2}}}{{{A^2}}} + \frac{{{y^2}}}{{{B^2}}} &= 0\\\frac{{{y^2}}}{{{b^2}}} + \frac{{{y^2}}}{{{B^2}}} &= \frac{{{x^2}}}{{{A^2}}} - \frac{{{x^2}}}{{{a^2}}}\\\frac{{{y^2}{B^2} + {y^2}{b^2}}}{{{b^2}{B^2}}} &= \frac{{{x^2}{a^2} - {x^2}{A^2}}}{{{A^2}{a^2}}}\\\frac{{{y^2}\left( {{B^2} + {b^2}} \right)}}{{{b^2}{B^2}}} &= \frac{{{x^2}\left( {{a^2} - {A^2}} \right)}}{{{A^2}{a^2}}}\end{aligned}\)

Use the given condition \({a^2} - {b^2} = {A^2} + {B^2}\), that is, \({a^2} - {A^2} = {b^2} + {B^2}\)to simplify.

\(\begin{aligned}{c}\frac{{{y^2}\left( {{B^2} + {b^2}} \right)}}{{{b^2}{B^2}}} &= \frac{{{x^2}\left( {{B^2} + {b^2}} \right)}}{{{A^2}{a^2}}}\\\frac{{{y^2}}}{{{b^2}{B^2}}} &= \frac{{{x^2}}}{{{A^2}{a^2}}}\\\frac{{{x^2}}}{{{y^2}}} &= \frac{{{A^2}{a^2}}}{{{b^2}{B^2}}}\end{aligned}\)

05

Substitute the values

Substitute \(\frac{{{x^2}}}{{{y^2}}} = \frac{{{A^2}{a^2}}}{{{b^2}{B^2}}}\) into equation (3).

\(\begin{aligned}{c}{m_1}{m_2} &= - \frac{{{b^2}{B^2}}}{{{a^2}{A^2}}} \cdot \left( {\frac{{{A^2}{a^2}}}{{{b^2}{B^2}}}} \right)\\ &= - 1\end{aligned}\)

As \({m_1}{m_2} = - 1\), this implies that hyperbola and ellipse are orthogonal.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free